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Chapter 1

Introduction

1.1 Monolayer graphene

The first isolation of monolayer graphene (MLG), a single sheet of carbon
atoms forming a honeycomb lattice, in 2004[1, 2] has attracted a huge in-
terest, and practically revolutionized physics and has affected the research
of many physicists. This is partly due to the fact that graphene is the first
stable two dimensional crystal, awaiting our exploration, and partly because
a general agreement has been reached in the closer condensed matter and
broader physics community that the basic model describing its charge carri-
ers is an effective, two dimensional, massless Dirac equation. Therefore, in
contrast to e.g. high Tc superconductors, where one has to struggle to justify
the actual model choice, not mentioning the various approximation schemes,
graphene’s low energy dynamics was soon demonstrated to be accountable for
by the Dirac equation, as evidenced by numerous experimental, theoretical
and ab initio studies.

Figure 1.1: Ripples in graphene

Even its existence is surprising, since the Mermin-Wagner theorem does
not allow for positional long-range order in two dimensions, thermal fluctua-
tions are expected to destroy long range crystalline ordering. A possible way
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out is provided by realizing that graphene is still of finite size, therefore as
long as the coherence length of ordering is longer than the actual system size,
it looks a stable two dimensional crystal. Moreover, improved experimental
techniques have revealed that graphene is not strictly two-dimensional but
hosts ripples i.e. surface waves, and stabilizes itself by fluctuations in the
third spatial dimension, as shown in Fig. 1.1, which are typically 20-200 Å
long and 10 Å high bumps
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Figure 1.2: Top: a small segment of the honeycomb lattice in shown, made of
two interpenetrating triangular lattices, with the two triangular sublattices
denoted by filled and empty circles, together with the translational lattice
vectors a1 and a2. The green lines separate the unit cells. Bottom left:
the low energy part of the spectrum in momentum space with the two non-
equivalent Dirac cones at the opposite corners of the Brillouin zone. Bottom
right: The full energy spectrum in the Brillouin zone.
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Soon after its discovery, a variety of interesting effect were predicted and
subsequently observed experimentally, such as unconventional quantum Hall
effect[2], a (possibly universal) minimal conductivity at vanishing carrier
concentration[3], Klein tunneling in p-n junctions[4, 5] and Zitterbewegung[6,
7], frequency independent optical conductivity over a wide frequency range
etc.

All these are natural consequences of the low energy physics of the half-
filled honeycomb lattice, studied in the tight-binding approximation. The
honeycomb lattice, depicted in Fig. 1.2 is regarded as two interpenetrating
triangular lattices, whose lattice sites form the two sublattices. By consider-
ing only nearest neighbour, intersublattice hoppings, the resulting Hamilto-
nian is written in momentum space in second quantized form as

Hgraphene =
∑

k,σ
(a+k,σ, b

+
k,σ)

(

0 tf(k)
tf ∗(k) 0

)(

ak,σ
bk,σ

)

, (1.1)

where the ak,σ and bk,σ operators annihilate particles from sublattice A and
B with momentum k and spin σ, f(k) = 1+2 exp(i3ky/2) cos(

√
3kx/2), and

we use the convention to take the nearest neighbour carbon atom distance
to unity (which is 1.42 Å), and t ≈ 2.7 eV the hopping integral between
neighbouring carbon atoms. Therefore, the spectrum consists of two bands
as E±(k) = ±t|f(k)|. The two bands touch each other at the corners of
the hexagonal Brillouin zone, among which three-three are connected by
reciprocal lattice vectors, ending up with two non-equivalent touching points
at K and K ′. By expanding the spectrum around these point, using e.g.
f(K+ p) ≈ (3/2)(px+ ipy), we arrive to a linearly dispersing band-touching
as EK

± (p) = ±3t|p|/2 at around point K, and similarly for point K ′. The
low energy physics is determined by excitations living close to these Dirac
points, described by an effective Dirac equation, given by

Hgraphene =
∑

p,σ,τz

Ψ+
p,σ,τz

(

0 vF (px − τzipy)
vF (px + τzipy) 0

)

Ψp,σ,τz , (1.2)

where vF = 3t/2 ∼ 106 m/s is the Fermi velocity, τz = 1, -1 denotes the
K and K ′ points and represents the valley degree of freedom and the spinor
Ψp,σ,τz = (ap,σ,τz , bp,σ,τz) contains operators with momentum close to the
Dirac point at K (τz = 1) or K ′ (τz = −1). By focusing on the e.g. τz = 1
term, namely a single a single Dirac cone, which is written in first quantized
form as

HDirac = vF

(

0 p̂x − ip̂y
p̂x + ip̂y 0

)

= vFσ · p̂, (1.3)
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where σ = (σx, σy) are Pauli matrices, most of graphene’s properties can
be analyzed by borrowing from high energy physics or QED to some ex-
tent, where the appearance of the Dirac equation is part of the daily rou-
tine. However, there are several significant differences between graphene’s
Dirac equation and its relativistic version: first, graphene’s charge carriers
are massless in the relativistic sense, namely that E(p) ∼ |p| down to small
momenta, whose fully relativistic realization among elementary particles is
hotly debated. Note that in the condensed matter sense, these are infinitely
heavy particles since the inverse of the effective mass tensor, calculated as

m−1 =
vF
|p|3

(

p2y −pxpy
−pxpy p2x

)

, (1.4)

has zero determinant and is therefore non-invertible. Second, the maximal
velocity for graphene’s particles is the Fermi velocity, being 1/300th the
velocity of light, therefore bringing the typical energy scales, required to in-
vestigate graphene, down to the conventional energy scales of a condensed
matter experiment, thus allowing for the observation of relativistic phenom-
ena in low temperature labs. Third, the matrix structure in Eq. (1.2) stems
from a peudospin variable, accounting for the two non-equivalent sublattices
of the honeycomb lattice and not from the the physical spin of the parti-
cles. Due to this sublattice structure, these are called chiral Dirac electrons,
since the helicity operator, σ · p/|p| commutes with the Hamiltonian and is
a good quantum number. For graphene, this implies σ ‖ p for a given eigen-
state. Note that by taking additional complications in the band structure
into account (e.g. hoppings etc), the Dirac points are shifted in energy, but
otherwise remain intact.

Due to the linear energy-momentum relationship and the two-dimensi-
onality of graphene, its density of states (DOS) per unit volume vanishes
linearly close to half filling as

ρ(ω) =
1

2π

|ω|
v2F

(1.5)

per spin and valley, similarly to d-wave superconductors or d-density waves[8].
In this respect, graphene is neither a metal with a sizeable DOS at the Fermi
energy, nor an insulator with strongly suppressed DOS, but can be regarded
as a semimetal.

The linear band crossing, provided by the Dirac equation in Eq. (1.3),
possesses a half-integer quantized Berry flux[9]. The wavefunction is written
in momentum space as

|α,p〉 = 1√
2

(

α
exp(iϕp)

)

, (1.6)
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Figure 1.3: Schematics of Klein tunneling in graphene. At normal incidence,
the transmission probability is always one for chiral particles, regardless to
the width or height of the barrier.

where α = ± corresponds to positive and negative energy states as Eα(p) =
αvF |p| and ϕp = arctan(py/px). The Berry phase is calculated from

−i
∮

C

dp · 〈p, α|∇p|α,p〉 = ±π, (1.7)

where C is a contour in momentum space enclosing the Dirac point and the
± sign depends on the orientation of the contour. The π Berry phase is
regarded as a hallmark of two-dimensional massless Dirac fermions.

Another particularly interesting feature of Dirac fermions, stemming from
their chiral nature, is their insensitivity to external electrostatic potentials
due to the so-called Klein tunneling[5], meaning that Dirac fermions can
be transmitted with probability 1 through a classically forbidden region, as
illustrated schematically in Fig. 1.3. This happens because positive energy
states can tunnel into negative energy states without changing their quantum
numbers. In particular, for a potential barrier of width D and height V0, the
transmission probability of an incoming electron with energy |E| << |V0|
is[3, 10]

T (φ) = cos2(φ)

1− cos2(Dqx) sin
2(φ)

, (1.8)

where φ is the angle of incidence and qx ≈
√

(V0/vF )2 − k2
y is the longitudinal
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Figure 1.4: Left: the minimal conductivity of various quality graphene sam-
ples at the Dirac (charge neutrality) point. Right: the longitudinal resistivity
and Hall conductivity of graphene in quantizing magnetic field as a function
the carrier density.

component of the momentum within the barrier and ky is the conserved
component of the momentum, parallel to the barrier. Note that forDqx = nπ
with n an integer, the barrier becomes completely transparent since T (φ) =
1, independent of the value of φ. In addition, for normal incidence with
φ → 0 and for any value of Dqx, barrier is again totally transparent. This
result is a manifestation of the Klein tunneling[5], which does not occur
for nonrelativistic electrons, where for normal incidence, the transmission
is always smaller than 1. Due to Klein tunneling, Dirac electrons cannot
be confined by conventional potential barriers[11], provided by gating the
sample, as opposed to conventional semiconductor technology.

Since helicity is a good quantum number in the low energy Dirac equation
description of graphene, backscattering is forbidden since it would require
changing the sign of the helicity of a given momentum state, which cannot
be provided by simple potential scatterers. Due to this, Dirac electron trans-
port in graphene can be ballistic for typical sample sizes. Since disorder is
unavoidably present in any material, there has been a great deal of interest
in trying to understand how disorder affects the physics of Dirac electrons
in graphene and its transport properties. Under certain conditions, Dirac
fermions are immune to localization effects observed in ordinary electron
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systems and it has been established experimentally that electrons can prop-
agate without scattering over large spatial regions of the micron size. This
originates from the intricate interplay of scattering and density of states: as
the charge neutrality point is approached, a decreasing number of particles
are available for charge transport due to the vanishing DOS, which, on the
other hand acquire an increasingly long lifetime even in the presence of disor-
der. These two effects cancel each other perfectly, resulting in a finite, almost
universal minimal conductivity at the Dirac point, largely independent from
the microscopic details of the sample, as illustrated in Fig 1.4.

Since graphene is inherently two-dimensional, it represents an ideal plat-
form to study quantum-Hall physics. A semiclassical Bohr-Sommerfeld quan-
tization of the cyclotron orbits predicts that the Landau levels follow an
unusual sequence as En ∼

√
n + Γ, where n is the Landau level index and

Γ is related to the Berry phase and can only be determined from quantum
mechanical considerations. These yield

En = sign(n)vF
√

2|n|eB⊥, (1.9)

where B⊥ is the perpendicular component of the magnetic field to the graphene
plane, and n is an integer. As opposed to a normal two-dimensional electron
gas (2DEG), these levels are not equidistant, and depend on

√
B⊥ in contrast

to the linear dependence of the 2DEG and do not possess zero point energy,
as follows from a Dirac oscillator vs. Schrödinger oscillator scenario. Each
Landau level is fourfold degenerate, coming from the combined effect of the
valley (2) and spin (2) degrees of freedom. The zero mode, provided by the
n = 0 Landau level is special since it is half electron- and half hole-like, as
it sits right at the intersection of the upper and lower Dirac cones, i.e. at
the Dirac point (see Fig. 1.5) When calculating the Hall conductivity, each
Landau levels contributes with a step of 4× e2/2h to the Hall conductivity,
where the factor of 4 comes from the valley and spin degeneracies, and the
2 in the denominator results from the π quantized Berry phase. The Hall
conductivity is qualitatively well described by

σxy =
2e2

h
sign(B)

N
∑

n=−N

sign (En − µ) (1.10)

producing the unconventional Hall steps in graphene as a function of the
chemical potential µ, as shown in Fig. 1.4, and N is a symmetric cutoff.

The first quantum Hall step, starting from the Dirac point with µ = 0, is
only 2e2/h large as opposed to the subsequent steps in the series with 4e2/h
size. This roots back to the peculiar zeroth Landau level with n = 0, which
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is only half particle like, therefore contributes only with a half step to the
plateaux sequence. Note that if there was no spin and valley degeneracy, the
contribution of this zeroth Landau level would be a half-integer quantized
Hall conductivity as e2/2h. Apparently, Dirac points always appear in pairs
due to a no-go theorem[12], therefore the smallest step is expected to be e2/h
in general.

The lowest (small n) Landau levels in graphene are separated by an en-
ergy gap of order 300-400 K in a magnetic field of 1 T, in contrast to a
two-dimensional electron gas, where the equidistant Landau levels are sepa-
rated by a gap of the order of the magnetic field itself. Due to the peculiar
quantization of Dirac fermions, the quantum-Hall effect remains observable
even at room temperatures[13]. These are illustrated with the density of
states of Landau quantized Dirac and normal two-dimensional electrons in
Fig. 1.5.

n = 0

hwc

E

D(E) D(E)

E

Figure 1.5: Left: the Landau level structure in the Dirac cone. Right:
the DOS in a Landau quantized normal two-dimensional electron gas and
graphene.

Graphene’s two dimensionality notwithstanding, it was possible to mea-
sure its optical conductivity, which exhibits a frequency independent optical
response over a wide frequency range. This can be understood from sim-
ple considerations: the electric current operator in the x direction for Dirac
fermions is jx = evFσx, independent from the momentum. Its matrix ele-
ment, corresponding to interband transition is |〈p,+|jx|p,−〉|2 = sin2(ϕp).
The total number of states, participating in this process is proportional to
the size of the Fermi surface ∼ |p|. Putting this together and using the lin-
ear relationship between energy and momentum, the total number of states,
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probed by an electromagnetic wave with frequency ω, scales with |ω|. Divid-
ing it by the frequency gives the optical conductivity, which indeed becomes
frequency independent. By working out the prefactor, the optical conductiv-
ity is

σxx(ω) =
πe2

2h
. (1.11)

Not surprisingly, since the Dirac equation does not contain any intrinsic
energy scale which would influence the optical response, the optical conduc-
tivity is also universal. The optical transparency is calculated from this as
Topt = 1 − πα, where α = e2/~c ≈ 1/137 is the fine-structure constant. De-
spite being only one atom thick, graphene is found to absorb a significant
2.3% fraction of incident white light, By stacking graphene to obtain multi-
layer graphene, the optical transparency reduces linearly with the number of
layers for up to 5 layers, as shown in Fig. 1.6.

Figure 1.6: Left: Photograph of an aperture partially covered by mono and
bilayer graphene. The line scan profile shows the intensity of transmitted
white light. Right: Optical transmittance as a function of the number of
graphene layers. From Ref. [14]

Most of graphene’s electronic properties can be analyzed using a single
particle picture based in the Dirac equation, and surprisingly good agree-
ment is reached when comparing to experimental results. This is even more
surprising in light of the fact that since its effective ”light” velocity (i.e. the
Fermi velocity) is 300 times smaller than the speed of light, its fine structure
constant should be 300 times bigger than that in QED, of the order of 1-2,
suggesting that interaction effects would play an important role and should
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be non-perturbative. While in most condensed matter systems, interaction
effect are omnipresent and obvious, one has to struggle with graphene to see
any sign of interactions. From the point of view of basic research, the re-
sent discovery of fractional quantum Hall physics in graphene sounds really
promising[15, 16], allowing for studying strongly interacting Dirac fermions
in quantizing magnetic field with no obvious analogue on high energy physics.

In addition to its unique electronic properties, which is the main concern
of this dissertation, graphene also exhibits unique mechanical properties and
is said to be the strongest material ever measured with a Young’s modulus
in the TPa regime. Its two-dimensionality makes it an ideal candidate to
engineer planar electronic devices. Since its bulk is its surface, it was shown
to be capable of detecting individual gas molecules, attached to its surface.
Among many others, graphene could accelerate genomics by reading the
whole human genome in two and a half hours. Whether graphene fulfills the
promise it holds in applied sciences remains to be seen in the future, but it
has certainly revolutionized condensed matter and related fields enormously
over the past 7-8 years.

1.2 Bilayer graphene

Bilayer graphene (BLG) is composed of two monolayer graphenes (MLGs)
in Bernal or AB stacking, meaning that the A sublattice of one layer is on
top of the B sublattice of the other layer, as shown in Fig. 1.7. This is
the typical stacking pattern of 3D graphite as well. Its charge carriers, as
we show below, reveal non-relativistic, ”Schrödinger” (quadratic dispersion)
and relativistic ”Dirac” (chiral symmetry, unusual Berry phase) features.
Due to their peculiar nature, as discussed below, BLG holds the promise
of revolutionizing electronics, since its band gap is directly controllable by a
perpendicular electric field over a wide range of parameters [17, 18, 19, 20, 21]
(up to 250 meV [22]), unlike existing semiconductor technology. Moreover,
unlike monolayer graphene, whose effective model, namely the Dirac equation
was thoroughly investigated in QED and relativistic quantum mechanics,
understanding the low energy properties of BLG represents a new challenge.

The band structure of BLG also follows from tight-binding calculations.
In addition to the intralayer hopping of the graphene layers, an interlayer
hopping, t⊥ ≈ 0.3-0.4 eV should be taken into account, since the typical
distance between the layers is d = 3.3 Å. Additional hopping processes
are also present, but these are neglected for the sake of simplicity. A tight
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Figure 1.7: The lattice structure of BLG with the relevant hopping processes,
the vertical green arrow denotes a perpendicular electric field.

binding calculation for the kinetic energy gives

Hgraphene =
∑

k,σ

Ψ+(k, σ)









∆ tf(k) 0 0
tf ∗(k) ∆ t⊥ 0

0 t⊥ −∆ tf(k)
0 0 tf ∗(k) −∆









Ψ(k, σ),

(1.12)

where the Ψ+(k, σ) = (a+1,k,σ, b
+
1,k,σ, a

+
2,k,σ, b

+
2,k,σ), and the operators create

particles on layer 1 or 2, sublattice A or B with momentum k and spin σ, as
visualized in Fig. 1.7, and f(k) has already been defined for MLG. Here, ∆
represents a layer dependent chemical potential, which arises upon switching
on a perpendicular electric field. Due to the 4 atoms in the unit cell, BLG
possesses 4 band, two of them touching each other at zero energy for ∆ = 0,
and two others separated by ±t⊥, as shown in Fig. 1.8

The low energy part of the spectrum in BLG is obtained by integrating
out the high energy modes, leading to an effective 2×2 description as[18, 23]

H =

(

∆ (px − ipy)
2/2m

(px + ipy)
2/2m −∆

)

, (1.13)

where m = t⊥/2v
2
F ≈ 0.03me, and its spectrum is ±

√

∆2 + (|p|2/2m)2. In
the presence of a finite electric field, the band touching disappears and a finite
bandgap appears, whose size is easily tunable by the electric field. However,
screening due to electron interactions becomes relevant in this case, and the
induced gap is related to the external potential, Uext, created by the electric
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Figure 1.8: The energy spectrum of BLG in the Brillouin zone together with
the low energy part of the spectrum around zero energy for ∆ = 0.

field as [18, 24]

2∆ = Uext +
e2dδn

2Acεrε0
, (1.14)

where δn =
∑

p(n1p − n2p) is the dimensionless density imbalance between
the two layers with nip the particle density of state p on the ith layer. The
induced gap to a good approximation is given by [18, 17]

∆ =

(

1 + λ ln

(

4t⊥
|Uext|

))−1
Uext

2
, (1.15)

and the density imbalance reads

δn = 4ρ0∆ ln (|∆|/2t⊥) , (1.16)

with λ = e2dρ0/Acεrε0 ∼ 0.1 − 0.5 the dimensionless screening strength, ε0
the permittivity of free space and ρ0 = Acm/2π~2 the density of states per
valley and spin in the limit ∆→ 0. For SiO2/air interface, εr ≈ 2.5 (εr = 25
for NH3, εr = 80 for H2O), which reduces the effects of screening. This extra
tunability of its bandgap makes bilayer graphene a promising candidate as
well for future electronic devices. By applying a dual-gate structure [19, 22,
20, 25, 21] with top and back-gate, the size of the gap together with the total
number of charge carriers can be tuned independently.
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The physical properties of BLG with ∆ = 0 are as surprising as those
of MLG, and vaguely speaking, in spite of the different topology of the low
energy Hamiltonians in Eqs. (1.3) and (1.13), it is a ”factor of 2 times mono-
layer graphene”. It exhibits a universal minimal conductivity at the charge
neutrality point, which is twice as large as that of MLG. Its wavefunction in
momentum space is

|α,p〉 = 1√
2

(

α
exp(i2ϕp)

)

, (1.17)

where α = ± corresponds to positive and negative energy states as Eα(p) =
α|p|2/2m and ϕp = arctan(py/px). The Berry phase is calculated to be
±2π [26] and in spite of its massive quasiparticles, it exhibits chiral symme-
try unlike particles obeying the standard Schrödinger equation. The Klein
tunneling is also peculiar in BLG: no perfect transmission occurs for perpen-
dicular incidence, in contrast to MLG, but perfect reflection. This perfect
reflection (instead of the perfect transmission) is viewed as another manifes-
tation of Klein tunneling, because the effect is again due to the chirality of
the quasiparticles (fermions in MLG and BLG exhibit chiralities that resem-
ble those associated with spin 1/2 and 1, respectively, as follows from the
π and 2π Berry phases). For MLG, an electron wavefunction at the barrier
interface matches perfectly the corresponding wavefunction for a hole with
the same direction of pseudospin due to chiral symmetry, yielding T = 1. In
contrast, for BLG, the chiral symmetry requires a propagating electron with
wavevector k to transform into a hole with wavevector ik (rather than −k),
which is an evanescent wave inside a barrier.

Additionally, BLG is also characterized by a featureless optical conductiv-
ity which is twice that of MLG, as shown in Fig. 1.6. One essential difference,
however, with respect to MLG is the finite density of states around half fill-
ing. Due to this, a short range electron-electron interaction is usually found
to be marginally relevant, leading to all sorts of phase transition in BLG, at
least on a theoretical level [27, 28, 29, 30]. The experimental verification of
such phase transitions still remains to be seen.

The Landau level structure in a perpendicular magnetic field also shows
Dirac like (chiral) and Schrödinger like features. In the absence of a gap, the
Landau levels per spin and valley read as

Enα = α
√

n(n + 1)eB⊥/m (1.18)

with α = ± and n non-negative integer and B⊥ is the perpendicular com-
ponent of the magnetic field to the BLG sheet. First of all, it contains two
degenerate zero modes (in contrast to the single zero mode in graphene),
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Figure 1.9: The Hall conductivity is shown schematically for MLG (blue)
and BLG (red) as a function of the particle density, n, measured from half
filling

while the low energy part of the spectrum increases is highly non-equidistant
in the Landau level index. This, however, crosses over to a ∼ n increase with
the Landau level index for large n, thus producing Schrödinger-like behaviour
at high energies. The resulting quantum Hall effect is also different from that
in graphene. Due to the doubled amount of zero modes, the first quantum
Hall step is 4e2/h large (twice as big as that in MLG) from the charge neu-
trality point, while all other steps have the same size as for graphene, since
the degeneracies of the finite energy states are identical for MLG and BLG.
The Hall conductivities are depicted in Fig. 1.9.

1.3 Topological insulators

Before the discovery of the integer quantum Hall effect, various phases of ma-
terials were classified according to their broken symmetries. For example, a
crystal breaks the rotational and translational symmetry of free space, super-
conductors break the gauge invariance, a magnet breaks the spin rotational
and sometimes the translational invariance etc. In 1980, the observation of
the perfect quantization (up to 9 digits) of the integer quantum Hall effect[31]
made us reconsider this issue, and the question ”What causes quantization”
called for an answer. Based on the seminal work in Ref. [32], it was re-
alized that quantization results from topological order, and some response
functions are determined by a topological invariant, explaining quantization.
The response function is independent of the sample-dependent microscopic
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parameters, such as scattering rate, interactions strength etc. due to topolog-
ical protection. Such materials are termed topological insulators. Another,
closely related definition states that a topological phase is an insulator in its
bulk, which develops metallic surface or edge states when it gets in contact
with a normal (i.e. topologically trivial) phase or vacuum. The connection
between the two definitions is provided by the bulk-edge correspondence,
which states that the integer value of the topological invariant is given by
the number of surface or edge states. For example, a 2e2/h Hall conductiv-
ity implies two conducting, ballistic, chiral channels around the edges of the
sample, immune to backscattering.

The early members of the topological insulator (TI) family were the cele-
brated quantum Hall states, but due to recent experimental and theoretical
progress [33, 34], numerous relatives have recently emerged. The topological
protection of these materials mostly arises from their specific band struc-
ture, deriving from a strong spin-orbit interaction. Application-wise, TIs
hold the promise to revolutionize spintronics, and contribute to conventional
and quantum computing.

We start by introducing two-dimensional TIs with one-dimensional edge
states. The first member of the TI insulator family is graphene. When
supplemented with the intrinsic spin-orbit coupling (SOC), its Hamiltonian
reads as[35]

H = vF (σxpx + σyτzpy) + ∆σzτzSz, (1.19)

where τz = ±1 distinguishes between the K and K ′ valleys, Sz is the phys-
ical spin and ∆ is the intrinsic SOC. This preserves parity and time re-
versal symmetry, and leads to a fully gapped spectrum in each valley as
±
√

v2F |p|2 +∆2, suggesting that it turns graphene into an insulator. How-
ever, when we leave the continuum limit and consider the original tight-
binding problem on the hexagonal lattice, the above SOC can be originated
by second nearest neighbour, intrasublattice hopping processes, which change
sign according to whether the hopping occurs clockwise or anticlockwise on
the hexagonal lattice. The SOC in Eq. (1.19) is related to a model introduced
by Haldane [36] as a realization of the parity anomaly in (2+1) dimensional
relativistic field theory. Since Eq. (1.19) conserves Sz, each spin species can
be treated separately. The Hamiltonians for Sz = ±1 violate time reversal
symmetry and are equivalent to Haldanes model for spinless electrons, which
could be realized by introducing a periodic magnetic field with no net flux.

The energy spectrum of the lattice model, reducing to Eq. (1.19) in the
continuum limit, is evaluated by considering a finite width graphene nanorib-
bon, revealing the presence of edge states. Fig. 1.10 shows the one dimen-
sional energy bands for a strip where the edges are along the zig-zag direction
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in the graphene plane. The bulk bandgaps at the one dimensional projec-
tions of the K and K ′ points are clearly seen. In addition to this, two bands
traverse the gap, connecting the K and K ′ points. These bands are localized
at the edges of the strip, and each band has degenerate copies for each edge.
The edge states are not chiral since each edge has states which propagate
in both directions. However, the edge states are ”spin filtered” in the sense
that electrons with opposite spin propagate in opposite directions.

-1

0

0 2π/aπ/a

E/t

k

1

X

X

Figure 1.10: One dimensional energy bands for a strip of graphene (shown
in inset). The bands crossing the gap are spin filtered edge states, from
Ref. [35].

The effective model for the edge states is

Heff = vFSzpx, (1.20)

protected by time reversal invariance, i.e. a right/left-going electron car-
ries spin up/down, and backscattering can only occur if the spin is also
flipped, therefore simple potential scattering cannot spoil the ballistic mo-
tion along the edges. The spin-Hall conductivity, calculated from either the
bulk model[9] using Eq. (1.19) or using only the existence of ballistic edge
states from Eq. (1.20), reads as

σspin
xy =

e

2π
, (1.21)

being quantized. Note that this quantization is less robust than that of
the quantum-Hall effect, since magnetic scatterers can provide us with effi-
cient backscattering by flipping the electron spin, and degrade the quantized
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spin-Hall response. So far, graphene as a spin-Hall insulator exists only in
our dreams, since the size of the intrinsic SOC is estimated to be in the
µeV range[37], being overwhelmed by additional processes such as impurity
scattering etc. Nevertheless, cold atomic systems can be used to engineer
graphene like system with intrinsic SOC [38].

Another member of the spin-Hall insulator family features a real mate-
rial, where the existence of edge states was predicted theoretically[39] and
subsequently demonstrated experimentally[40], namely HgTe/CdTe quantum
wells. The Hg1−xCdxTe belongs to the family of semiconductors with strong
spin-orbit interactions. Its band structure is rather common among semicon-
ductors: the conduction/valence band states have an s/p-like symmetry. In
HgTe, however, the p levels are above the s levels, resulting in an inverted
band structure. Ref. [39] considered a quantum well structure where HgTe is
sandwiched between layers of CdTe. When the thickness of the HgTe layer
is d < dc = 6.3 nm, the 2D electronic states bound to the quantum well have
the normal band order. On the other hand, for d > dc, the 2D bands invert.
The inversion of the bands with increasing d signals a quantum phase transi-
tion between the trivial insulator and the quantum spin Hall insulator. This
follows from the observation that the system has inversion symmetry: since
the s and p states have opposite parity, the bands will cross each other at dc
without an avoided crossing, causing the energy gap to vanish at d = dc.

The experimental results from Ref. [40] are depicted in Fig. 1.11, demon-
strating convincingly the existence of the edge states of the quantum spin
Hall insulator.

Three dimensional topological insulators posses two dimensional surface
states, described by a two-dimensional Dirac equation as[33, 34]

H = vF (Sxpy − Sypx) + ∆Sz, (1.22)

where S stands for the physical spin, and ∆ is a mass gap, originating from
a thin ferromagnetic film covering the surface of TI, lifting the Kramer’s
degeneracy of the Dirac point. After a π/2 rotation of the spin around Sz, it
reduces to the conventional form of the Dirac equation in Eq. (1.3). The spin
dependence comes, similarly to the two-dimensional case, from strong spin-
orbit coupling, therefore, materials with large atomic number are beneficial,
such as Bi[33, 34].

Among their fascinating properties, such as the surface quantum Hall
effect, coming from Eq. (1.22) in a perpendicular magnetic field, three-
dimensional topological insulators feature the topological magnetoelectric
effect. This means that the electron spin can be manipulated by an elec-
tric field and conversely, the electric current can be controlled by a magnetic
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Figure 1.11: Experiments on HgTe/CdTe quantum wells. a) Quantum well
structure. b) As a function of layer thickness d the 2D quantum well states
cross at a band inversion transition. The inverted state is a quantum spin-
Hall insulator with helical edge states, whose non-equilibrium population is
determined by the leads (c). d) Experimental two terminal conductance as a
function of a gate voltage that tunes the Fermi energy through the bulk gap.
Sample III and IV show quantized transport associated with edge states.
From Ref. [40].

field. This comes from the observation that the electric current operator
for the surface states is jx,y ∼ ∂H/∂px,y ∼ Sy,x, therefore a vector poten-
tial, describing a time dependent electric field, which couples normally to
the electric current, couples directly to the electron’s spin. Conversely, the
Zeeman coupling to a magnetic field, B, involves S · B terms, affecting the
charge dynamics.

1.4 Landau-Zener dynamics and Kibble-Zurek

scaling

As we have seen previously, the basic equation governing the charge carri-
ers in graphene and its variants as well as topological insulators is a 2 × 2
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Dirac equation. Whenever some spatial or temporal dependent potentials
are added to it, one needs to solve two coupled differential equations, as is
the case for e.g. a time dependent vector potential, describing an electric
field and spatially dependent scalar potential, accounting for a p-n junc-
tion in graphene[41]. The simplest and probably the most widely used time
dependent 2 × 2 Hamiltonian is the Landau-Zener model[42, 43], which is
to time-dependent quantum phenomena what the harmonic oscillator is to
quantum mechanics. Note that the case of a scalar potential can also be
mapped to this in the momentum representation[44]. It describes a two-level
system, going through an avoided level crossing. Its Hamiltonian is

HLZ =

(

−vt ∆
∆ vt

)

, (1.23)

and v > 0. Its instantaneous eigenenergies are given by ǫ±(t) = ±
√

∆2 + (vt)2.
Its eigenvectors are |1〉 = (1, 0)T with positive eigenenergy and |0〉 = (0, 1)T

with negative eigenenergy, and the time evolution starts at t→ −∞ with |0〉
being occupied. Was the time evolution completely adiabatic, i. e. v → 0,
then at time t → ∞ the system would be in its ground state as |1〉 with
probability one. In case of diabatic time evolution with v → ∞, the final
state at t→∞ would still coincide with the initial state as |0〉. For any finite
rate passage, there will be a finite probability to stay in the initial state and
to tunnel to the other state. The celebrated Landau-Zener formula describes
the probability to tunnel into the excited state and is given by

Pad = exp

(

−π∆
2

v

)

. (1.24)

This can be obtained from the exact solution of the model, which is, however,
not very illuminating since it involves the parabolic cylinder functions[45, 46].
By using some approximate, semiclassical methods such as the WKB[47]
or its temporal version known as the Landau-Dykhne method[48, 49], the
required probability is determined from

Pad = exp



−2Im
t+
∫

t−

ǫ+(t)dt



 , (1.25)

which describes the tunneling between the adiabatic energy levels, from ǫ−(t)
to ǫ+(t), which is determined by the classically forbidden regions. The limits
of integration is determined after continuing the adiabatic eigenenergies to
complex time and look for a crossing point between the two bands as ǫ+(t) =
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0. This occurs when t± = ±i∆/v. The above expression is correct within
exponential accuracy in general since it neglects the interference between
multiple quantum tunneling processes. Interestingly, this gives the exact
result for the Landau-Zener model, e.g. for the present case. The above
integral is evaluated easily since it only requires the knowledge of the area of
a semi-circle, giving Eq. (1.24).

The Landau-Zener model is closely connected to the celebrated Kibble-
Zurek scaling[50], and is often considered to be the microscopic basis to
to derive it for specific models after mapping them to the Landau-Zener
model[51], which is the case for a magnetic field quench in the transverse field
Ising chain[52, 53] as an example. A quench here means a time-dependent
change of some parameters in the Hamiltonian. If it is abrupt, we face a
sudden quench. The Kibble-Zurek argument[54, 55] predicts a scaling form
for the defect density following a slow quench through a quantum critical
point. A finite rate passage through a quantum critical point (QCP) results
in closing the gap, with an activated behaviour and a finite correlation length
giving way to metallic response and power-law correlations exactly at the
QCP. Due to the non-equilibrium nature of the process, defects (excited
states, vortices) are produced. When the relaxation time of the system, which
encodes how much time it needs to adjust to new thermodynamic conditions,
becomes comparable to the remaining ramping time to the critical point, the
system crosses over from the adiabatic to the diabatic (impulse) regime. In
the latter regime, its state is effectively frozen, so that it cannot follow the
time-dependence of the instantaneous ground states – as a result, excitations
are produced[50]. Evolution restarts only after leaving the diabatic regime,
with an initial state mimicking the frozen one. The theory, general as it
is, finds application in very different contexts in physics, ranging from the
early universe cosmological evolution[54] through liquid 3,4He [56, 55, 57] and
liquid crystals[58, 59] to ultracold gases[60], verified for both thermodynamic
and quantum phase transitions[61].

Having argued that defects should be generated, we now sketch the deriva-
tion of the Kibble-Zurek scaling. Let ∆ be the characteristic energy scale
associated with the proximity to the critical point, which can be a gap or
some other crossover scale. The evolution becomes non-adiabatic close to
the critical point when the ’reaction time’ of the quantum system given by
the inverse of the energy gap is comparable with the timescale at which the
Hamiltonian is changing: 1/∆ ∼ ∆/(d∆/dt)[62]. Assuming linear quenches
of the form ∆ ∼ |t/τ |zν , where τ measures the adiabaticity of the quench,
the typical crossover time is tc ∼ τ zν/(zν+1), where z and ν are the dynamical
and correlation length exponents, respectively. The healing length, ξ typ-
ically denotes the length over which a single defect is present, which gives
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Figure 1.12: A cartoon for the Kibble-Zurek dynamics, g is a control parame-
ter and the QCP is located at gc, thus ∆ ∼ g−gc. When the relaxation time,
τrelax ∼ 1/∆ becomes comparable to the quench time, τquench ∼ ∆/(d∆/dt)
(which is constant for a linear quench), the evolution becomes diabatic and
defects are produced.

ξ ∼ τ ν/(zν+1). The density of defects in a d-dimensional system scales as
1/ξd which leads to the Kibble-Zurek scaling form for the density of defects
n given by

n ∼ ξ−d ∼ τdν/(zν+1). (1.26)

The process is shown schematically in Fig. 1.12.

1.5 Luttinger liquids: basic properties

Understanding non-equilibrium dynamics and quantum many body effects
represent equally exciting problems of contemporary physics. When these
two fields are combined, namely when strongly correlated systems are driven
out-of-equilibrium, we face a real challenge. Experimental advances on ul-
tracold atoms [63] have made the time dependent evolution and detection of
quantum many-body systems possible, and in particular, quantum quench-
ing the interactions by means of a Feshbach resonance or time dependent
lattice parameters has triggered enormous theoretical [64, 65, 51, 66] and
experimental [67, 68, 69, 70] activity.

Luttinger liquids (LLs) are ubiquitous as effective low-energy descriptions
of gapless phases in various one-dimensional (1D) interacting systems [71, 72].
In 1D fermions, e.g., Landau’s Fermi liquid (FL) description breaks down for
any finite interaction, and the low-energy physics is described by bosonic
collective modes with linear dispersion, and is characterized by anomalous
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non-integer power-law dependences of correlation functions. This is to be
contrasted to a Fermi liquid, where the quasi particle picture (electron) holds,
implying critical exponents fixed to an integer. The LL similarly arises as the
low-energy description of interacting 1D bosons or that of spin chains [71].

The breakdown of the FL description is best exemplified by the equal-
time single particle correlation function, which, at T = 0, behaves in real
space as

〈Ψ(x, t)Ψ+(0, t)〉FL ∼
Z

x
, (1.27)

for a FL, where Z ≤ 1 is Landau’s quasiparticle weight[73], and Ψ(x, t) is
the fermionic field operator, which annihilates a particles at x in real space
and at t in real time. In a LL, it decays as

〈Ψ(x, t)Ψ+(0, t)〉LL ∼
1

x1+γ2 , (1.28)

where γ depends on the interaction strength. Its spatial Fourier transform
corresponds to the momentum distribution function, which exhibits a finite
jump at the Fermi wavevector kF in a FL, signalling the existence of long-
living fermionic excitations. In contrast, fermionic quasiparticles are not
welcome in a LL, thus Z vanishes, as shown in Fig. 1.13.

kF kF

n(
k)

k k

Luttinger liquidFermi liquid

Z

T=0

n(
k)

}

Figure 1.13: The momentum distribution function is depicted schematically
for a FL (left) and LL (right). The finite jump at kF , characteristic of the
FL disappears in a LL, giving way to a smooth power law behavior.

A similar distinction can be made in the time or frequency domain as
well. The decay of the real time correlator,

〈Ψ(x, t)Ψ+(x, 0)〉FL ∼ t−1 (1.29)

26



in a FL is to be contrasted to the LL behaviour as

〈Ψ(x, t)Ψ+(x, 0)〉LL ∼ t−(1+γ2), (1.30)

changing the integer exponent to an arbitrary real number. Its temporal
Fourier transform defines the density of states (DOS), whose behaviour is
shown in Fig. 1.14. While the DOS is typically finite in a FL at the Fermi
energy, it vanishes in a power law manner in a LL, developing pseudogap
behaviour, because fermions are not good quasiparticles.

Luttinger liquidFermi liquid T=0

FF
ωω ω ω

ρ(
ω

)

ρ(
ω

)
Figure 1.14: The quasiparticle density of states is shown schematically for a
FL (left) and LL (right). The finite DOS at the Fermi energy, ωF , charac-
teristic to a FL, vanishes in a LL.

The reason why the Fermi liquid picture breaks down and gets replaced
by collective bosonic excitations can be answered at several different levels of
sophistication. Since a dissertation reflects the thinking of its author about
these problems, we present here a simple, illuminating argument. Let’s con-
sider spinless, non-interacting fermions in d-dimensions with isotropic spec-
trum ǫ(k), whose Hamiltonian is

H0 =
∑

k

[ǫ(k)− µ] c+k ck, (1.31)

where µ is the chemical potential.The operator, describing density fluctuation
in momentum space is

ρ(q) =
∑

k

c+k ck+q, (1.32)

which is bosonic in nature since it is a bilinear of fermionic operators. Its
response function is given by the well-known Lindhard formula[73, 72] as

χ(ω,q) =

∫

ddk

(2π)d
nk − nk+q

ω + iδ + ǫ(k)− ǫ(k + q)
, (1.33)
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where nk is the Fermi distribution function and δ → 0+. At |q| ≪ kF and
|ω| ≪ µ, the integral is dominated by terms close to the Fermi surface. In
one-dimension, the Fermi surface consists of two points as ±kF , and

χ(ω,q) =
q

2π

(

1

ω + iδ − vF q
− 1

ω + iδ + vF q

)

, (1.34)

where vF is the Fermi velocity. Each term in Eq. (1.34) has a pole structure
and represents the Green’s function of a massless bosonic mode with linear
spectrum ω = ±vF q, propagating in the positive or negative direction in one
dimension. The poles clearly indicate that these are long living, coherent
bosonic modes in one dimension. In d > 1 space dimension, however, ad-
ditional angular integrations remain, which smear out eventually the sharp
Dirac-delta peaks in Imχ(ω,q) and yield brunch-cut singularities. Thus, al-
ready for non-interacting, higher dimensional fermions, the low energy spec-
trum of density excitations is exhausted by the incoherent background of
electron-hole pairs.

The relevance of the one-dimensional case is further corroborated upon
realizing that the fermionic field operator can be decomposed into right- and
left-moving fermions as

Ψ(x) ≈ exp(ikFx)R(x) + exp(−ikFx)L(x), (1.35)

where

R(x) =
∑

k∼0

exp(ikx)ckF+k, L(x) =
∑

k∼0

exp(ikx)c−kF+k, (1.36)

and the k summation is restricted for momenta close to each Fermi point as
|kα| ≪ 1 with α an ultraviolet regulator. Then, to a good approximation, the
Fourier transform of the long wavelength part of the above density fluctuation
operator is decomposed as

ρ(x) ≈
∑

r=±

ρr(x) with ρ+ = R+(x)R(x) and ρ− = L+(x)L(x). (1.37)

The Fourier transform of ρr(x) satisfies an almost bosonic commutator,

[ρr(p), ρr′(p
′)] = δr,r′δp,p′

Lp

2π
, (1.38)

up to a normalization factor. This allows us to define proper bosonic creation
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and annihilation operators as

bp =

(

2π

L|p|

)1/2
∑

r

Θ(rp)ρr(−p), (1.39)

b+p =

(

2π

L|p|

)1/2
∑

r

Θ(rp)ρr(p) (1.40)

and Θ(x) is the Heaviside function. With this, the kinetic energy is written
as[72, 71]

H0 ≃
∑

p 6=0

vF |p|b+p bp. (1.41)

This equation is indeed remarkable since the kinetic energy, which was ini-
tially quadratic in terms of the fermionic operators, becomes quadratic in
the language of the bosonic operators, which are, however, fermionic bilin-
ears, therefore the resulting expression is also expressed as a quartic from of
fermionic operators. It is not hard to see that a quartic fermionic interac-
tion is expressed as a quadratic form of the bosonic operators. Therefore,
the main trick of bosonization is not to simplify the interaction but rather
to express the kinetic energy in a clever way by properly chosen bosonic
operators.

In the presence of interactions, a general one-dimensional Hamiltonian
with forward scattering interaction reduces in many cases to the so-called
Luttinger model[71, 71, 74, 75], which describes the Luttinger liquid univer-
sality class as

H =
∑

q 6=0

(ω(q) + g4(q))b
†
qbq +

g2(q)

2
[bqb−q + b+q b

+
−q], (1.42)

with ω(q) = vF |q| (vF being the bare ”sound velocity” in the non-interacting
case), g2,4(q) = g2,4|q| and g2 results from interaction between right- and left-
moving fermionic densities as ρ+(x)ρ−(x), while the g4 process stems from
interaction of rightmovers or leftmovers among themselves as e.g ρ+(x)ρ+(x).
The latter is mostly responsible for velocity renormalization as v = vF +
g4. This setting is very general, and equally describes a variety of one-
dimensional models such as interacting spinless fermion system, one dimen-
sional Bose-gases, e.g. the Tonks-Girardeau limit of a 1D Bose gas [70] is
also successfully described by such an effective Hamiltonian as interacting
bosons can also bosonized[76], one dimensional spin chains such a the XXZ
Heisenberg model, what we discuss further below. The Luttinger liquid de-
scription also applies to multicomponent models such as spinful fermions and
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accounts for spin-charge separation (a detailed discussion is available in Refs.
[72, 71]).

The basic identity of bosonization involves the relation between the fer-
mionic field operators and the bosonic field. For example, the right-going
field, R(x), can be expressed in terms of the LL bosons as [71]

R(x) =
η+√
2πα

exp (iφ+(x)) , (1.43)

where η+ denotes the Klein factor, which is a Majorana fermionic operator
and it can be neglected in many calculations. Finally,

φ+(x) =
∑

q>0

√

2π

|q|L exp(−α|q|/2)
(

exp(iqx)bq + exp(−iqx)b+q
)

, (1.44)

and a similar expression exists for the left-movers, involving q < 0 momenta[71,
72, 74].

Finally, let us note that instead of the parametrizing a LL with the various
g interaction parameters from g-ology[77], one can introduce two parameters,
characterizing all correlation function in the long time-long distance asymp-
totic region, which are the renormalized velocity v and the LL parameter K
as

v =
√

(vF + g4)2 − g22, (1.45)

K =

√

vF + g4 − g2
vF + g4 + g2

. (1.46)

For example, the γ2 exponent in Eqs. (1.28) and (1.30) reads as

γ2 =
K +K−1

2
− 1, (1.47)

which gives γ = 0 for the non-interacting limit, K = 1, in accord with the
Fermi liquid theory.

The best-known example of a lattice model, leading to LL physics is the
XXZ Heisenberg model, which reads as

H =
∑

m

J
(

Sx
mS

x
m+1 + Sy

mS
y
m+1

)

+ JzS
z
mS

z
m+1 (1.48)

where m indexes the lattice sites with lattice constant set to unity, and
J > 0 is the antiferromagnetic exchange interaction. This can be brought to
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a simpler form after a Jordan-Wigner transformation, which reads as [71]

S+
l = exp

(

iπ
∑

m<l

nm

)

c+l , S−
l = exp

(

iπ
∑

m<l

nm

)

cl, (1.49)

Sz
l = nl −

1

2
, nl = c+l cl (1.50)

where the c’s are fermionic operators, or alternatively, one can think of S+

and S− as hard-core boson creation and annihilation operators. The XXZ
Heisenberg Hamiltonian maps onto spinless 1D fermions with nearest neigh-
bour interaction [71]:

H =
∑

m

J

2

(

c+m+1cm + h.c.
)

+ Jznm+1nm, (1.51)

up to an irrelevant shift of the energy. Alternatively, S+
l acts as a hard core

boson creation operator to site l, and the model maps to the hopping problem
of hard core bosons, interacting with nearest-neighbour repulsion.
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Figure 1.15: The LL parameters of the XXZ Heisenberg model are plotted
as a function of the anisotropy parameter Jz.

This can conveniently be bosonized, using the steps sketched above, after
going to the continuum limit [71, 72], yielding the Luttinger model in Eq.
(1.42). The connection between the two models is established as −1 ≪
g2/2v = Jz/πJ ≪ 1 in the weak-coupling limit. The LL description remains
valid for |Jz| < J , and the LL parameters are obtained exactly for this specific
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model using the Bethe-Ansatz as

v

vF
=

π

2

√

1− (Jz/J)2

arccos(Jz/J)
, (1.52)

K =
π

2[π − arccos(Jz/J)]
, (1.53)

where vF = J , and these are depicted in Fig. 1.15.
At the isotropic XXX point with Jz = J , a Kosterlitz-Thouless quantum

phase transition takes place to an antiferromagnetically ordered phase for
Jz > J . This transition is, however, not described by the Luttinger model
in Eq. (1.42), but is driven by additional terms in the Hamiltonian, out-
side of the realm of the Luttinger model. Their investigation is beyond the
scope of the present dissertation. The Jz = −J point represent a first order
isotropic ferromagnetic quantum critical point, where the spectrum becomes
quadratic, as is typical for a ferromagnet. In the close vicinity of this point
within the gapless phase, the linear energy-momentum relationship remains
valid only at very low energies, and is replaced by a quadratic relationship
with increasing energy. There, bosonization only works at very low energies,
when the linearized spectrum approximation works.

1.6 Experimental realization of one-dimensi-

onal systems

The LL paradigm applies to a variety of systems. Initially, quasi-one-di-
mensional condensed matter systems were suspected to belong to this cate-
gory like the Bechgaard salts[78], and later carbon nanotubes, i.e. rolled up
graphene sheets realized more faithfully LLs[79, 80, 81, 82, 83]. In particu-
lar, photoemission spectroscopy (PES) experiments[84, 85] probe directly the
spectral functions in Eq. (1.28) and (1.30), yielding the non-integer power
law exponents as shown in Fig. 1.16. Subsequent transport[86] as well as
nuclear magnetic and conduction electron spin resonance studies[87, 88, 89]
have confirmed the adequacy of the LL picture. The edge states in integer
and fractional quantum-Hall states form also one-dimensional object, and
are described by the LL theory[71].

Recent years have witnessed a tremendous amount of experimental ad-
vances in cold atomic systems[63]. Trapping one-dimensional bosons or fer-
mions offers the possibility to realize LL physics with the extra tunability of
system parameters such as the inter-particle interaction (tunable by a Fes-
hbach resonance or by changing the parameters of the optical trap) or the
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Figure 1.16: The PES spectra of single-wall carbon nanotubes. The spectral
function, |ω|α (α = 0.46), broadened by the energy resolution, is indicated by
a thick solid line in the spectrum at 10 K. The spectra of Au (3D conventional
metal) are also shown. The left inset shows the PES, which were measured
with an energy resolution of 15 meV at hν = 65 eV, plotted on a loglog scale.
The right inset shows the photoemission spectra and the densities of states
(DOS) calculated for the LL state in the metallic nanotubes.

various relaxation channels (i.e. no phonons or impurities wich are ubiquitous
in condensed matter systems). Ultracold fermionic gases have been realized
using several atoms such as 40K[90, 91, 92], 6Li[93], 171Yb-173Yb[94], 163Dy[95]
and 87Sr[96], and temperatures well in the quantum degeneracy regime were
reached (T < 0.1 EF , with EF the Fermi energy). All these atomic sys-
tems feature tunable interactions. Among these, 1D configurations have
been realized using 40K[90, 91], 6Li[93], and the momentum distribution has
been measured in time of flight (ToF) experiments in 2D[96] and 3D[92, 94]
Fermi gases. Therefore, by applying ToF imaging or momentum resolved rf
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spectroscopy[90], the observation of the momentum distribution of Eq. (7.13)
is within reach for 1D fermions [90]. Furthermore, the specific momentum
distribution of a LL has already been observed in the Tonks-Girardeau limit
of 1D Bose systems[70], which exhibit fermionic properties in this strongly
interacting regime.

The peculiarities of 1D systems were first demonstrated in the so-called
quantum Newton’s cradle experiment[69], sketched schematically in Fig. 1.17.
Already the classical, idealized Newton’s cradle when several balls are si-
multaneously in contact, can only approximately be explained by just the
exchange of specific momentum values[97]. A 1D Bose gas made of 87Rb
atoms, initially prepared in a highly out of equilibrium momentum super-
position state of right- and left-moving atoms, was evolved in time without
any noticeably sign of equilibration even after thousands of collisions. In 1D,
such system with point-like interparticle interactions realizes the Lieb-Liniger
gas[98], which is Bethe-Ansatz integrable. This means in this case, that there
are as many constants of motion as degrees of freedom (i.e. Bose particles),
therefore the system’s motion in phase space is restricted by the constants of
motion. As a result, ergodicity breaks down and the gas does not thermalize,
as was observed in the momentum distribution after several cycles, which re-
tained a typical two-peak structure, characteristic to the initial state. When
the same experiment was repeated using two- or three dimensional gases,
which are not integrable, thermalization sets in immediately even within the
first period.

Coupled condensates are also useful to mimic LL behaviour. Using atom
chips, a 1D Bose gas with a few thousand atoms can be trapped in the
1D quasicondensate regime at very low temperature[67], and the 1D gas
can be split into two 1D quasicondensates. Such a 1D quasi-condensate
can be thought of as a LL, since the excitation spectrum grows linearly
with the momentum. By the application of radio frequency (rf) induced
adiabatic potential, the height of the barrier between the two condensates can
be adjusted by controlling the amplitude of the applied rf field. This allows
one to achieve both Josephson coupled and fully decoupled quasicondensates.
The fluctuations of the relative phase of the two condensates are measured
by the coherence factor

Ψ(t) =
1

L

∣

∣

∣

∣

∫

dx exp [i(θ1(x, t)− θ2(x, t)]

∣

∣

∣

∣

, (1.54)

where θ1,2 are the phases of the two condensates obtained after the splitting,
respectively, and L is the length of the analyzed signal. This is predicted to
behave, using a LL description, as Ψ(t) ∼ exp(−(t/t0)2/3) with t0 a decay
time constant.

34



Figure 1.17: a. Visualization of a classical Newton’s cradle[97]. b. Sketches
at various times of two out of equilibrium clouds of atoms in a 1D anharmonic
trap. Initially, the atoms are prepared in a momentum superposition state
of right and left moving atoms. The two parts of the wavefunction oscillate
out of phase with each other with a period τ . Each atom collides with the
opposite momentum group twice every full cycle, for instance, at t = τ/2.
Anharmonicity causes each group to gradually expand, until ultimately the
atoms have fully dephased. Even after dephasing, each atom still collides
with half the other atoms twice each cycle.
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Figure 1.18: Double logarithmic plot of the coherence factor, Ψ as a func-
tion of time for decoupled 1D condensates. Each point is the average of 15
measurements, and error bars indicate the standard error. The slopes of the
linear fits are in good agreement with a 2/3 exponent, coming from a LL
description, from Ref. [67].
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Chapter 2

Main objectives

Understanding the non-equilibrium dynamics and the electronic properties
of novel exotic materials are in the focus of contemporary condensed mat-
ter physics. When these two are combined, fascination is guaranteed. We
will investigate the non-equilibrium transport properties of Dirac electrons in
two dimensions: for most nanoelectronic applications, the interest is in the
high electric field regime since devices are usually operated at or near the
current saturation limit. So far, little has been known about graphene and
topological insulators under those conditions, while most of their equilibrium
properties are understood at least on a qualitative level. Quantum transport
and non-linear responses driven by finite external fields represent a genuine
non-equilibrium phenomenon, giving rise to e.g. dielectric breakdown or
Bloch oscillations. The quantum aspect of these effects is particularly pro-
nounced in reduced dimensions. Therefore, two-dimensional massless Dirac
electrons in finite electric fields, one of the subjects of this work, provide a
fascinating setting for studying these issues. This will also provide us with
the direct observation of several phenomena from high-energy physics, such
as Schwinger’s pair production. In addition, increasing amount of interest
originates in this direction from the physics of ultracold atoms, where out-
of-equilibrium preparation and investigation of model systems (including the
honeycomb lattice) is possible.

Strong electric field can have a peculiar effect in bilayer graphene, con-
sisting of two closely stacked graphene monolayers. When changed adia-
batically, a perpendicular electric field leads to gap opening at the charge
neutrality point. How non-adiabaticity affects the physical properties of bi-
layer graphene and whether temporal changes of the gap yield any peculiar
phenomenon is a relevant question from both experimental and theoretical
perspective. In addition to non-equilibrium time-evolution, the properties of
the steady state reached after a time periodic perturbation are so far largely
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unexplored.
The search for topologically non-trivial materials is becoming very active

recently, and we will also characterize the topological benefits of driving
quantum systems periodically. In particular, the fate of a quantum spin-
Hall insulator, the first topological insulator realized experimentally, will be
investigated in a strong electromagnetic field.

Switching on interactions in a non-equilibrium fashion is a different, tho-
ugh equally exciting way of reaching exotic states of matter. In particu-
lar, non-equilibrium dynamics and strong-correlation phenomena in quan-
tum many body systems represent equally challenging fields of physics. The
combination of these two fields, namely when strongly correlated systems are
driven out-of-equilibrium, we face a real challenge. Experimental advances
on ultracold atoms [63] have made the time dependent evolution and de-
tection of quantum many-body systems possible, and in particular, quantum
quenching the interactions by means of a Feshbach resonance or time de-
pendent lattice parameters has triggered enormous theoretical [51, 66, 98]
and experimental [67, 68, 69, 70] activity. Inspired by these, we’ll study
and characterize the non-equilibrium properties of Luttinger liquids after a
temporal change of the interaction parameter.
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Chapter 3

Non-linear electric transport in
graphene

3.1 Longitudinal transport

A strong electric field produces peculiar phenomena in a variety of systems.
First of all, it was predicted to create particle-antiparticle pairs, starting
from the Dirac equation, which has a long history pioneered by the discovery
of the Klein paradox[5]. In 1951, Schwinger derived a formula for the pair
creation probability[99] and found that the Dirac vacuum in an electric field
is unstable against creation of particle-antiparticle pairs.

This non-perturbative particle creation mechanism in strong external
fields has a wide range of applications; not only the original QED problems
but also pair creation in non-Abelian electromagnetic fields and gravitational
backgrounds or close to a Mott transition[45]. For electron-positron pair cre-
ation, an electric field strength of the order 1016 V/cm is needed, which is
beyond current technological capabilities, and it still calls for its first, unam-
biguous experimental observation, which can be obtained in graphene and
related systems.

Additionally, in condensed matter quantum transport and non-linear re-
sponses driven by finite external fields represent a genuine non-equilibrium
phenomenon, giving rise to e.g. dielectric breakdown or Bloch oscillations[100].
The quantum aspect of these effects is particularly pronounced in reduced di-
mensions. Therefore, two-dimensional Dirac electrons in finite electric fields,
the subject of this chapter (based on our work in Refs. [101, 102]), provide
a fascinating setting for studying these issues.

Electronic transport in a finite electric field is accounted for successfully
by the Drude theory in normal metals. In graphene, however, special features
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of Dirac electrons should be included: (i) their velocity is pinned to the ”light
cone” Fermi velocity, vF , (ii) relativistic particles undergo pair production
in strong electric fields, as predicted by Schwinger[99], and (iii) a uniform
electric field modifies locally the geometry of the Fermi surface by moving
the Dirac point around in momentum space (Eq. (3.4)). Since massless Dirac
electrons can be thought of as being critical, this can lead to the production of
excited states, and should leave its fingerprints on transport in finite electric
fields.

Ohm’s law predicts that in a metal, the current (j) grows linearly with
the electric field (E) as

j = σE, (3.1)

for small fields, as was reformulated by G. Kirchhoff. For graphene, the linear
relationship has been confirmed, though there is no agreement on the explicit
value of the dc conductivity, σ from the theoretical side. In particular, it was
shown[9] that the dc conductivity of 2D massless Dirac electrons at T = 0
per spin and valley is given by[103, 104]

lim
Γ→0

lim
ω→0

σ(ω,Γ) =
e2

πh
, lim

ω→0
lim
Γ→0

σ(ω,Γ) =
e2π

8h
(3.2)

within linear response, where Γ is the scattering rate and ω is the external
frequency. In general, electric transport depends on several parameters such
as frequency, temperature, electric field and scattering rate (ω, T , E, Γ),
and physical quantities depend strongly on how the (ω, T, E,Γ)→ 0 limit is
taken[105, 9].

In the followings, we will validate explicitly Eq. (3.1) for small fields and
show, that for strong electric fields, graphene does not obey it any more, but
follows a non-linear current-voltage characteristics. Our results are summa-
rized in Table 3.1.

classical Kubo Schwinger/Kibble-Zurek
t≪ h/W h/W ≪ t≪ 1/

√
vF eE 1/

√
vF eE ≪ t≪ tBloch

jx ∼ Et jx ∼ E jx ∼ tE3/2

Table 3.1: Temporal evolution of the non-equilibrium current for clean
graphene. Bloch oscillations show up for t & tBloch ∼ 1/eaE[100] with a
the honeycomb lattice constant.

We focus on the 2+1 dimensional Dirac equation in a uniform, constant
electric field in the x direction, switched on at t = 0, through a time de-
pendent vector potential as A(t) = (A(t), 0, 0) with A(t) = EtΘ(t). The
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resulting time dependent Dirac equation, describing low energy excitations
around one of the Dirac points for clean graphene, is written as

H = vF [σx(px − eA(t)) + σypy] + ∆σz, i∂tΨp(t) = HΨp(t). (3.3)

For the moment, we set ∆ = 0, but will return to the finite ∆ case at the
end of this chapter.

Due to the (pseudo)spin structure in Eq. (3.3), it represents a natural
formulation for the study of Landau Zener dynamics, as emphasized in the
Introduction. We first perform a time dependent unitary transformation
[46], which rotates it into the instantaneous basis U+HU = σzǫp(t), where
the resulting energy spectrum ǫp(t) is given by

ǫp(t) = vF

√

(px − eA(t))2 + p2y. (3.4)

The transformed time dependent Dirac equation reads

i∂tΦp(t) =

[

σzǫp(t)− σx
v2FpyeE

2ǫ2p(t)

]

Φp(t), Ψp(t) = UΦp(t). (3.5)

Note that the electric field appears in the energy spectrum and induces off-
diagonal terms in the Hamiltonian, which is a consequence of the explicit
time dependence of the unitary transformation (−iU+∂tU). The spinor is
given by

Φp(t) =

(

αp(t)
βp(t)

)

, (3.6)

with the initial condition αp(0) = 0 and βp(0) = 1, implying half-filled
graphene, (the lower/upper Dirac cone is occupied/empty).

After switching on the electric field, the current acquires a finite expecta-
tion value, which, however, requires the knowledge of the density of excited,
positive energy states, np(t) = |αp(t)|2 as

〈jx〉p(t) = −evF
[

vF (px − eEt)

ǫp(t)
(2np(t)− 1)− 2

ǫp(t)

vFeE
∂tnp(t)

]

. (3.7)

The first term is the current from particles residing on the upper or lower
Dirac cone, while the second one describes interference between them, and is
responsible for Zitterbewegung. Using QED terminology, the first and second
term is referred to as conduction and polarization current, respectively[45].
In condensed matter, these are called intraband and interband contributions,
respectively. The term independent of np(t), namely ev2F (px − eEt)/ǫp(t)
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vanishes at half filling after momentum integration. In QED, this originates
from charge conjugation symmetry[45], while in graphene, the same result is
obtained by taking the full honeycomb lattice into account as in Ref. [106].

Before switching on the current, the upper/lower Dirac cone is empty/fully
occupied. The quantity np(t) measures the number of particles created by
the electric field in the upper cone through Schwinger’s pair production[99].
In graphene, instead of particle-antiparticle pairs, electron-hole pairs are cre-
ated. Therefore, the basic quantity to determine transport through graphene
is np(t).

In the weak electric field case, only the polarization term contributes to
the current, and one can solve Eq. (3.5) perturbatively in the electric field
to obtain np(t). After taking valley and spin degeneracies into account, the
dc conductivity is obtained[101] as

σ = j/E = e2π/2h, (3.8)

in accordance with Ref. [106].

This is the value of the ac conductivity at finite frequencies obtained from
the Kubo formula[103, 104, 3] and measured also[14], and since the model
does not contain any additional energy scale, which would change the value
of the ac response down to ω → 0, the same value for the dc conductivity
sounds plausible. In this regime, all electrons propagate with the maximal
velocity vF , therefore the current is saturated, independent of time. Within
our approach, the small field response is dominated by the Zitterbewegung,
i.e. electric field induced interband transition. The ultrashort time transient
response (tW ≪ h with W the bandwidth) is non-universal and follows from
classical consideration[101] as well.

For the general time and electric field dependence, one can use the analogy
between Eq. (3.3) and the Landau-Zener model in Eq. (1.23). Using Eq.
(1.24) in the strong field, long time (specified in Eq. (3.12)) regime, we
obtain[45, 107, 99] from Eq. (1.24)

np(t) = Θ(px)Θ(eEt− px) exp

(

−
πvFp

2
y

eE

)

, (3.9)

which is the massless, two-dimensional pair production rate by Schwinger[99,
45]. It applies when (px, eEt− px)≫ |py|.

The physics behind Eq. (3.9) can be understood as follows: two levels at
±px, weakly coupled by py level cross with time, ending up at ±(px − eEt).
The transition is completed when both the initial and final levels are well
separated, in which case the mixing between them is given by Eq. (3.9),
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as plotted in Fig. 3.1. Eq. (3.9) describes the highly non-thermal, non-
equilibrium momentum distribution in the upper Dirac cone, while 1−np(t)
is that in the lower cone.

In this regime, the current is dominated by the conduction (intraband)
part as

〈jx〉(t) =
2e2E

π2

√

vF eEt2, (3.10)

exhibiting a linear increase in time, which appears to be quite analogous to
what is observed for electrons in a conventional parabolic band. However,
the origin of the time dependence is completely different: it stems from the
increasing number of pairs due to pair production à la Schwinger, each con-
tributing with the same velocity vF , as opposed to the continuously acceler-
ated fixed number of normal electrons in strong fields. The E3/2 dependence
under distinct conditions has also shown up in Refs. [108, 109, 105].

The expectation value of the total number of particles-hole pairs created,
N(t) is obtained from np(t):

N(t) =
2

π2

∫

dpnp(t) =
2eE

π2vF

√

vF eEt2. (3.11)

This reproduces Eq. (3.10) via 〈jx〉(t) = evFN(t). This equation is related to
the quench dynamics through a quantum critical point (QCP)[52], and can be
reobtained using the Kibble-Zurek mechanism[54, 55, 101]. This also predicts
the tE3/2 scaling of the total defect density for Eq. (3.3), similarly to Eq.
(3.11), linking the non-linear transport in graphene to critical phenomena.

Putting the weak and strong field results together, the low field, perturba-
tive response is dominated by interband contributions, and can be regarded
as a manifestation of Zitterbewegung. With increasing field, a large num-
ber of electron-hole pairs are created, and intraband processes take over,
producing non-linear transport.

This crossover is determined by the dimensionless time-scale, which can
be obtained by comparing our system to the Landau Zener model as[110]

τcross =
√

vF eEt2. (3.12)

For τcross ≪ 1, no level crossing occurs, and we can use perturbation theory to
estimate the current, therefore we are in the Kubo regime, while for τcross ≫
1, the Schwinger mechanism is operative. In Landau Zener language, the level
crossing is completed once τcross ≫ 1. The total number of pairs created is
non-perturbative in the electric field.

So far we have discussed the real time evolution of the current after the
switch-on of the electric field in the Dirac equation, summarized in Table 3.1.
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Figure 3.1: Left panel: visualization of the temporal evolution of the Landau
Zener dynamics. Right panel: schematic picture of the current-electric field
characteristics for graphene. Interband transitions are overwhelmed by in-
traband ones with increasing electric field, and the dominant contribution to
the measured current changes in character from polarization to conduction.

In ideal clean graphene, for long enough times, Bloch oscillation would set
in due to the underlying honeycomb lattice structure. We have thus simu-
lated the switch-on of the electric field on the honeycomb lattice numerically
by solving the resulting differential equation, following from performing the
Peierls substitution in f(k), defined in the Introduction. We have recovered
all three regions[111] from Table 3.1 with the correct numerical coefficients,
before Bloch oscillations set in. Therefore, this established the applicability
of the Dirac description to study the non-equilibrium response of graphene.

The next question which naturally arises is that what happens away from
this highly idealized limit without any sources of dissipation or scattering.
In the simplest approach, the time t should replaced by an appropriate scat-
tering time[106], τsc in the spirit of Drude theory, arising from scattering due
to phonons or impurities. Alternatively, in ballistic samples, ballistic flight
time from the finite flake size, τb = Lx/vF [108] would assume that role.

The observation of non-linear electric transport requires, from Eq. (3.12),
an electric field as

E > Ec = 1/vF eτ
2, (3.13)

where τ = min(τsc, τb, τ∆) is the shortest of the additional restricting time
scales (with τ∆ defined below). Ballistic transport on the (sub)µm scale
implies τ ∼ 0.1− 1 ps, giving Ec ∼ 103 − 105 V/m[112].

The exponents of the electric field of the linear (trivially 1) and non-
linear (3/2) regime do not differ significantly, and the measured current is
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Figure 3.2: The electric current together with its components is shown as a
function of time, after switching on the electric field, eEvF/γcc = 0.004, from
the numerical solution[111] of the time dependent Schrödinger equation on
the honeycomb lattice, γcc is the nearest neighbour hopping and σ is defined
in Eq. (3.8). All regions agree with the predictions of the Dirac equation,
summarized on Table 3.1.

expected to show a change of slope as a function of the electric field in the
crossover region, and an extended electric field window would be required
to reveal the non-integer exponent, as shown in Fig. 3.1. The linear (small
E) region is independent of time through Eq. (3.8), naturally accounting
for the scattering independent minimal conductivity. We emphasize that in
both regions, the current is related to np(t). Thus, even the linear response
regime witnesses pair production.

Recent transport measurements of undoped graphene devices have re-
vealed superlinear current-voltage characteristics[113] for strong voltages, i.e.
I ∼ V α , with α close to the predicted one (1.5), depicted in Fig. 3.3, thus
confirming our predictions and the realm of Schwinger’s pair production for
graphene. However, contrary to expectations, only low mobility samples,
implying large scattering rate, provided an exponent close to 1.5, increasing
mobility yielded an exponent closer to 1. The origin of this counterintu-
itive behaviour calls for further studies on non-equilibrium graphene in the
presence of defects.

These results are also relevant for other systems with possible Dirac
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Figure 3.3: Electronic transport in graphene: a) Measured current I per unit
of lateral length lW vs source-drain voltage V in a low- mobility sample for
different gate voltages: Vg = 0, 20, 40V, Vg = 0 corresponds to the Dirac
point. The length between the voltage electrodes l = 1.1 µm and lW =
1.1 µm. b) Measured I-V in a high-mobility sample, at the Dirac point,
before and after the introduction of defects through electronic bombardment,
l = 2.2 µm and lW = 550 nm. c) Double-logarithmic scale plot of I − V . d)
Exponent α as a function of mobility for different devices, l varies from 0.9
to 5.9µm and lW from 70 to 1500 nm.

fermions such as the organic conductor[114] α-(BEDT-TTF)2I3 with a tilted
Dirac cone, or for topological insulators. Dirac fermions can be realized in
cold atoms in an appropriate optical lattice (half filled honeycomb, kagome
and triangular lattices), without any source of dissipation or scattering, a
regime not naturally accessible for materials-based condensed matter sys-
tems. The momentum distribution, Eq. (3.9), reveals the effect of the driv-
ing electric field before Bloch oscillations set in[100]. The pairs created in-
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crease the energy of the system as ∼ t2E5/2, which, together with the highly
non-thermal momentum distribution of Bloch states, can be measured after
releasing the trap. This could be a first direct experimental observation of
the Schwinger mechanism with microscopic resolution as well.

3.2 (Spin-) Hall effect

The hallmark of (pseudo-) relativistic massive Dirac electrons[115] is a single
quantum Hall step around half-filling in the absence of magnetic field between
σxy = ±e2/2h. By extending the technique developed in the first part of this
chapter, we pose and answer the question: how this picture gets modified
in the presence of strong electric fields. A strong electric field alters not
only the longitudinal transport[101], but is expected to modify the transverse
conductivity, involving the non-equilibrium quantum (spin-) Hall breakdown.
Common wisdom has it that while there are no power law corrections to
the integer Hall conductivity for weak electric fields, with its quantization
‘topologically’ protected, there can be exponentially small corrections. When
these grow with field, quantization breaks down.

Motivated by the previous exact solution of the non-equilibrium, lon-
gitudinal current response of gapless graphene, we now focus on the time
evolution of the Hall current for massive Dirac Fermions, after switching on
a longitudinal electric field. We show that a stationary transverse current de-
velops for long times, characterized by a quantized Hall conductivity for weak
fields, crossing over to a power-law decaying Hall response with increasing
field. This result is expected to apply to the quantum spin-Hall breakdown of
graphene[116] as well as for the related[33] surface Hall and magnetoelectric
effect in TI.

The adequate Hamiltonian around the Dirac point in graphene[3] or on
the surface state of a 3D TI[117, 33], as in Eq. (1.22) in the presence of a
uniform, constant electric field (E > 0) in the x direction is given by Eq.(3.3).
Here, ∆ > 0 is the mass gap, originating from e.g. the intrinsic spin-orbit
coupling (SOC) in graphene[35], or from a thin ferromagnetic film covering
the surface of TI.

After a unitary transformation, bringing Eq. (3.3) to the instantaneous
basis, similarly to the longitudinal case, we get

i∂tΦp(t) =

[

σzεp(t)− σx

vF eE
√

(vFpy)2 +∆2

2ε2p(t)

]

Φp(t), (3.14)

with εp(t) =
√

∆2 + v2F ((px − eA(t))2 + p2y). The spinor structure and initial

47



condition are identical to those in Eq (3.6).
In contrast to the gapless Dirac equation, Eq. (3.14) contains intrinsic

energy scales (due to the finite ∆), whose ratio determines the fate of the
system. the diagonal energy (∆) and off-diagonal coupling (vF eE/2∆), which
triggers transitions between the two gap edges or levels using Landau-Zener
(LZ) terminology[110]. A crossover from weak to strong field is thus expected
at E ∼ ∆2/vFe, irrespective of the explicit value of t, as we confirm below
by a more detailed analysis.

The quantity we focus on is the time dependent transverse charge current,
jy = −evFσy, with spin current and conductivity differing only by a factor
1/evF . For TI, jy coincides with the topological magnetic field induced par-

allel to the applied electric field (after the π/2 rotation of the spin, leading
to Eq. (3.3)) and monitors the magnetoelectric effect[118, 117]. The current
reads as

〈jy〉p(t) = −
evF∆

εp(t)

(

∂t
[

ε2p(t)∂tnp(t)
]

vFeE((vFpy)2 +∆2)
+

vF eE

2ε2p(t)
(2np(t)− 1)

)

, (3.15)

which depends only on np(t) = |αp(t)|2 and its time derivatives, which par-
allels completely with the longitudinal case discussed previously. The short
time limit of the Hall response exhibits peculiar behaviour, similarly to the
longitudinal one, as discussed in Ref. [102], but we focus on the more relevant
long time behaviour.

In the long time limit (t ≫min[1/∆,
√

1/vFeE]), we can use again the
analogy of Eq. (3.14) to the Landau-Zener problem[110, 101] in Eq. (1.23)
to determine np(t) via Eq. (1.24):

np(t) = Θ(px(eEt− px)) exp

(

−π[(vFpy)
2 +∆2]

vF eE

)

, (3.16)

which is the extension of Eq. (3.9) to the case of a finite gap. In this limit, the
second term in Eq. (3.15) dominates, and the transverse current reaches a
time independent value, as opposed to the long time limit of the longitudinal
current in Eq. (3.10), which increases linearly with time, as

jy(t) = σxyE (3.17)

with

σxy =
(evF )

2∆

4πh

∫

dp
1− 2np(t)

ε3p(t)
≈ e2

2h
erf

(

√

π∆2

vF eE

)

, (3.18)
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Figure 3.4: The long time limit of the Hall conductivity is plotted as a
function of the applied longitudinal electric field. Quantization breaks down
when E ∼ ∆2/~vFe. The red circles denote the numerical data from the
numerical solution of the Dirac equation, Eq. (3.14), the black dashed line
is the approximate expression from Eq. (3.20) at large fields.

with erf(x) being the error function. The structure of the non-equilibrium
Hall conductivity at long times (Eq. (3.18)) parallels closely with the con-
ventional equilibrium Kubo expression[119, 120] after shifting the momentum
with the vector potential and replacing the equilibrium Fermi functions with
the non-equilibrium momentum distributions, Eq. (3.16). Alternatively, Eq.
(3.18) reflects the competition between Berry’s curvature (Ωp = v2F∆/2ε3p(t)),
protecting quantization[32] and the difference of momentum distributions in
the upper (np(t)) and lower (1− np(t)) Dirac cones in the numerator, spoil-
ing it. When the two distributions are comparable due to tunneling from the
lower to the upper Dirac cone, the gap becomes irrelevant, and the conduc-
tivity decays.

In the limit of small fields (E ≪ π∆2/vF e), we recover its quantized value
as

σxy =
e2

h

∫

dp
Ωp

2π
=

e2

2h
, (3.19)

in agreement with Eq. (1.21), without higher order perturbative or power law
(in E) corrections. The additional terms contain the non-perturbative, expo-
nential factor exp(−π∆2/vFeE), signaling the robustness of Hall quantiza-
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tion [121] and the half-integer quantized magnetoelectric polarizability[118].
In the strong field limit (E ≫ π∆2/vFe), it decays as

σxy =
e2

2h

2∆√
vFeE

. (3.20)

For TI with a mass gap (∆ 6= 0), the magnetization produced by surface
currents probes the Hall conductivity through the topological magnetoelec-
tric effect, and the magnetization parallel to the electric field follows Eq.
(3.18): its quantization breaks down with increasing field similarly to the
Hall response.

Assuming a small gap of the order of 0.01-1 K (typical for the intrinsic
SOC of graphene[35, 122] or TI) the crossover field is 0.001-10 V/m for vF ∼
106 m/s, easily accessible experimentally. The Hall conductivity together
with numerical results on the Dirac equation is shown in Fig. 3.4. The
agreement between the analytically and numerically obtained conductivities
is excellent.
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Figure 3.5: The energy spectrum of a spin-Hall insulator[35] in graphene,
tcc is the hopping. Left panel: without electric field, showing two gap-
less, spin degenerate edge states. Right panel: with finite critical electric
field (red/black denoting up/down spin states), distorting the spectrum, and
bringing additional levels into play around zero energy. Consequently, the
spin-Hall conductivity is not quantized any more. Similar effects are gen-
erated by a strain induced pseudo-electric field having opposite sign in the
two valleys, resulting in a valley-Hall effect. For stronger E, band crossing
is more significant.

A static, uniform electric field can also be represented by a scalar potential
as V (r) = eEx. Therefore, we have decided to take a complementary look
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at the stationary version of the same problem by analyzing Eq. (3.3) in a
static, uniform electric field from a scalar potential and without the vector
potential. Due to the time-independence of this setup, the eigenenergies can
be determined from the stationary Schrödinger equation, and the evolution
of the spectrum and edge states as a function of the electric field can be
followed. We thus consider the tight-binding spectrum of a zigzag graphene
ribbon[35] with intrinsic SOC, causing a gap with opposite sign between the
two valleys, sublattices and spin directions in the continuum limit, similarly
to Fig. 1.10. Without an electric field, only the edge states, connecting the
two Dirac cones, carry the transverse current, in accord with Fig. 1.10, while
in a strong electric field perpendicular to the edges, the effect of edge states
is supplemented by the appearance of additional low energy modes living in
two dimensions, due to the bands approaching and eventually touching each
other, as seen in Fig. 3.5. As long as the electric field is smaller than a critical
value, causing the band touching, the band structure remains qualitatively
similar to that in Figs. 1.10 and 3.5 left panel: edge states are protected by
a finite gap, above which a continuum of excitations exist. The spin-Hall
response remains protected in this range. When the electric field exceeds its
critical value, Ec, the gap closes (right panel in Fig. 3.5), and the edge states
merge with the continuum, and are not protected any more: the spin-Hall
breakdown occurs,

These results also allow to conjecture the nature of the quantum-Hall
breakdown which occurs for graphene and related systems: 2D Dirac elec-
trons in crossed stationary in plane electric (E) and perpendicular magnetic
(B) field exhibit Landau quantization and subsequently quantized Hall con-
ductivity. The value (e2/2h per spin and valley) and the origin of the lowest
quantum Hall plateau agrees with that of Eq. (3.19), therefore its break-
down can also share common origin. Indeed, at E = vFB, all Landau levels
collapse[123, 124, 125] as visualized in Fig. 3.6 and a different Hall response
should arise. Defining the energy gap as the distance between the Lan-
dau levels closest to the Dirac point, we have ∆Landau = vF

√
2eB, yielding

E = ∆2
Landau/2evF for the field causing the collapse of Landau levels, which

agrees well with the crossover field where the spin-Hall response changes
dramatically. We expect that some of our results can be transcribed to the
quantum Hall breakdown in graphene[116], testified by a Hall conductivity
decreasing with the electric field, similarly to Eq. (3.20).

Finally, we return to the behaviour of the longitudinal response in the
presence of a mass gap. The perturbative regime is characterized by expo-
nentially activated behaviour due to the gap, and the current is exponentially
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Figure 3.6: First ten Landau levels as function of |E|/vF |B| from Ref [124].
The quantity Ec is the cyclotron energy ω̃c. The one dimensional momentum
k, which is a good quantum number in the Landau gauge, was chosen to be
zero.

suppressed at low temperatures (T ≪ ∆) as

j ∼ E exp(−2∆/kBT ),

just as in normal semiconductors. On the other hand, for strong electric
field, we can still use the analogy to Landau Zener tunneling as

〈jx〉(t) =
2e2E

π2

√

vF eEt2 exp

(

− π∆2

vF eE

)

. (3.21)

Non-linear transport sets in for E > π∆2/vFe, which defines a new timescale
for Ec as τ∆ = 1/∆

√
π.

In general, the non-linear current for d+1 dimensional (d = 1, 2, 3) Dirac
electrons[107] is

〈jx〉(t) ∼ tE(d+1)/2 exp

(

− π∆2

vF eE

)

. (3.22)
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For d = 1, a good realization would be carbon nanotubes (rolled up graphene
sheet), whose ”non-linear” response is still linear (j ∼ E), only the non-
trivial exponential factor with a possible gap reports about non-perturbative
effects[126]. The d = 3 case might be realized among the bulk electrons of
Bi, possessing a band-gap ∼ 0.015 eV.

In summary, we have studied the effect of longitudinal electric field on
the non-linear longitudinal and Hall response of graphene and topological
insulators[101, 102]. The current parallel to the electric field grows non-
linearly with the field as j ∼ E3/2, which represents a clear deviation from
Ohm’s law and what was also found in subsequent experiments on graphene.
The Hall current of a single, massive Dirac cone grows as jHall ∼ E1/2. Both
responses witness electron-hole pair production and can be analyzed in terms
of Schwinger’s pair production.
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Chapter 4

Quantum quench dynamics in
bilayer graphene

The idea of using graphene as a possible source of coherent radiation has
appeared in the literature short after its first isolation[127]. In this chap-
ter, we show that BLG looks also very promising as the basic building block
of a solid-state laser[128]. BLG features the unique property of altering its
bandgap close to half filling by gate voltages, as discussed in the Introduc-
tion. Tuning the gap through zero in BLG in a time dependent perpendicu-
lar electric field parallels closely to a finite rate passage through a quantum
critical point (QCP), and the resulting physics parallel to the Kibble-Zurek
scaling[54, 55]. By manipulating the gap – in particular in real time – via a
spatially uniform external electric field, which can therefore play the role of a
(time dependent) control parameter, establishes BLG as an ideal setting for
the study of quantum quenches[129, 130, 62]. The non-equilibrium state after
the time-dependent process often possess an inverted population with high
energy states occupied with a larger probability than their low energy part-
ners. This could in principle provide a coherent source of infra-red radiation
with tunable spectral properties (frequency and broadening). As there are
only few materials that generate light in the infrared with tunable frequency,
BLG with its unique properties might represent the first step towards new
lasers for this regime.

4.1 Defect production in BLG

We start by analyzing a more general class of low energy Hamiltonians, com-
prising MLG from Eq. (1.3) and BLG from Eq. (1.13), exhibiting quantum
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Figure 4.1: Reversing the applied perpendicular electric field + ~E in half-
filled BLG (left) at a finite rate 1/τ leads to excited states in the upper
branch in accordance with the Kibble-Zurek theory of non-equilibrium phase
transitions (right). The momentum distribution increases from red (0) to blue
(1) in the spectra. Realistic quenching times provide an effective population
inversion with little effect on the layer charge asymmetry.

critical behaviour, as

H =

(

∆ cJ(px − ipy)
J

cJ(px + ipy)
J −∆

)

, (4.1)

where J is a positive integer. The energy spectrum is determined as E±(p) =
±
√

∆2 + ε2(p), where ε(p) = cJ |p|J is the gapless spectrum, |p| =
√

p2x + p2y
with spatial dimension d = 2.

The correlation length follows from dimensional analysis: ξ ∼ (cJ/|∆|)1/J ,
defining ν = 1/J as the correlation length exponent[131]. The Hamiltonian
contains the Jth spatial derivative (Jth power of p), which leads to the
dynamical critical exponent z = J . The resulting scaling relation zν = 1 is
in agreement with a linearly vanishing gap ∆.

We will study the quantum quench dynamics when the gap varies as
∆(t) = ∆0t/τ (up to logarithmic corrections, as analyzed below) and t ∈
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[−τ, τ ]. According to Kibble-Zurek scaling [54, 55] in Eq. (1.26), the result-
ing defect (extra electron/hole on the hole/electron rich layer, respectively,
equivalent to excited states in the upper branch in this case[132], as shown
in Fig. 4.1) density is

ρ ∼ (∆0/τ)
1/J . (4.2)

The matrix structure of Eq. (4.1) allows us again to connect our problem to
the Landau-Zener (LZ) dynamics [110, 42, 43] in Eq. (1.23) by analyzing the
solution of

i∂tΨ(t) = HΨ(t), Ψ(−τ) = Ψ−, (4.3)

where HΨ± = E±Ψ±, and the quantity of interest is Ψ(τ) and we focus on
a zero temperature initial state. The diabatic transition probability between
final ground and excited states at momentum p for ε(p) ≪ ∆0 gives the
momentum distribution of excited states in the upper branch (Fig. 4.1) and
the resulting total defect density, which, using the Landau-Zener result from
Eq. (1.24), yields

Pp = exp
(

−πε2(p)τ/∆0

)

, (4.4)

ρ =
Ac

(2π)2

∫

d2pPp =
AcΓ(1/J)

4Jπ

(

∆0

πc2Jτ

)1/J

(4.5)

per valley, spin and unit cell, with Ac the unit cell area. The exponents
agree with Kibble-Zurek scaling in Eq. (4.2). However, the present approach
also provides the explicit numerical prefactor for arbitrary J , similarly to
the quantum Ising model [52], when mapping to the Landau-Zener model
is possible. While realizing the J = 1 quench seems unlikely in MLG, the
J = 2 case with c2 = 1/2m is indeed realized by BLG. By using a dual-gate
structure [19, 22, 20, 25, 21], a continuous change of the gate voltage results
in closing and reopening the gap, as the density imbalance between the layers
is inverted in BLG.

Upon changing the external potential as a function of time, we should in
principle monitor the real time evolution and buildup of the screening on the
layers. This would represent a significant challenge, which can be circum-
vented upon realizing that when the external potential changes adiabatically,
the resulting gap and density imbalance are given by Eqs. (1.15) and (1.16),
respectively. For slow, nearly adiabatic temporal changes of the potential,
only a small fraction of terms in the δn sum is expected to behave truly dia-
batically (contribution from states nearest to the gap edges), while the rest
follows an adiabatic time evolution. Therefore, for near-adiabatic quenches,
when only the lowest energy states are affected, we can still use the adiabatic
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expression for the induced gap to a good approximation. We have checked
this numerically and verified, that the total number of excited states can be
obtained using Eq. (1.15) at least semi-quantitatively [128].

The number of defects (excited states in the upper branch) created in an
external potential, follows Eq. (4.5) even in the presence of screening as

ρ

ρ0∆0
=

1

2

√

∆λ

∆0

√

1

τ∆0
, (4.6)

where ∆0 = |U0/2|, ∆λ ≡ ∆|Uext=U0
from Eq. (1.15). In terms of numbers,

since ∆0ρ0 ∼ 10−3 for ∆0 ∼ t⊥/10, the resulting density of defects per unit
area (including spin and valley) falls into the order of

√

1/τ∆0× 1012 cm−2,
and typically takes the value 3× 109 cm−2 for quenching time τ ∼ 1 ns, cor-
responding to a ramping rate ∆0/τ ∼ 107 eV/s. Note that this density corre-
sponds to the electrons/holes in the otherwise empty/occupied upper/lower
branch, and does not by itself imply any particular real space density modu-
lation, since these states contribute negligibly to the layer charge imbalance.
A moderately slow quench implies τ∆0/1 ∼ 10 − 100 with ∆0 ∼ t⊥/10,
translating to τ ∼ 0.1− 1 ps.
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Figure 4.2: The dynamic conductivity of BLG is shown for τ∆λ = 0.1 (blue),
1 (red) and 10 (black) as a function of frequency.
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4.2 Non-equilibrium optical response

Having evaluated of the defect density in BLG, created during the quench,
we now focus on the optical response of the resulting non-equilibrium state,
which is strongly affected by the momentum distribution given by Eq. (4.4),
which differs significantly from a thermal distribution. Eq. (4.4) is popu-
lation inverted, i. e. for any finite quench time, the occupation number of
state at the upper gap edge is always larger than that below the lower gap
edge. The optical response is evaluated by considering a small ac electric field
within linear response, e.g. using Fermi’s golden rule, and the dynamic con-
ductivity after the quench is related to the rate of optical transitions between
the two states with the same momentum, weighted by the probabilities of
occupied initial and empty final states, yielding the dynamical conductivity

σ(ω)

σ0
=

[

1− 2 exp

(

πτ

(

∆λ −
ω2

4∆λ

))][

1 +
4∆2

λ

ω2

]

Θ (|ω| − 2∆λ) , (4.7)

with σ0 = πe2/h the ac conductivity of BLG [133, 134], twice that of MLG
from Eq. (1.11) and is plotted in Fig 4.2. At high energies, the population
inversion is lost and it approaches its universal, frequency independent value
as seen in Fig. 1.6. However, close to the gap edge, the dynamic conductivity
is negative due to the population inversion [127] (i.e. the energy injected into
the system during the quench is released) as

σ(ω → 2∆λ) ≈ −2σ0. (4.8)

This indicates the dominance of stimulated emission and a phase coherent
response, which is of course essential for a laser. In addition, stimulated emis-
sion can also win against spontaneous emission by increasing the intensity
of the incoming radiation field. If spontaneous emission dominates (lumi-
nescence), the resulting radiation will still be spectrally limited but without
phase coherence.

The typical lasing frequency is estimated to be in the close vicinity of ∆λ

(including the THz regime, wavelength of the order of 10 µm), conveniently
tunable by perpendicular electric fields [22]. The relaxation times for intra-
and interband processes in MLG are estimated as 1 ps and 1-100 ns[127], re-
spectively, which might be further enhanced in BLG around half-filling[135].
Thus, the lasing is expected to survive for quenching times in the ps-ns range
even in the presence of the above processes.

Our results apply to other systems with a quadratic band crossing, e.g.
for certain nodal superconductors or cold atoms on Kagome or checkerboard
optical lattices [136] at appropriate fillings, described by Eq. (4.1) with J = 2
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at low energies. The momentum distribution, Eq. (4.4) and the concomitant
scaling of the defect density after closing and reopening the gap would be
direct evidence of the quench dynamics. Particularly intriguingly, graphene
multilayers with appropriate stackings realize higher order (J > 2) band
crossings [137, 138].

To conclude, by exploiting the tunability of the band gap in BLG by a
perpendicular electric field, a finite rate temporal electric field quench leads
to excited state production, whose distribution is analyzed in terms of Kibble-
Zurek scaling and LZ dynamics for non-linear quenches[128]. The effect of
the quench is manifested in population inversion, and BLG could be used as
a coherent source of infra-red radiation, and possibly as a laser.
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Chapter 5

Rabi oscillations in graphene

A graphene sheet in a perpendicular magnetic field hosts Landau levels as in
Eq. (1.9), with an unusual dependence on the Landau level index n as

√
n,

in accord with experimental observations[139, 140]. This is to be contrasted
with the linear in n dependence of a two dimensional electron gas, obeying
the Schrödinger equation. Not only the spectrum is different, but the wave-
function and consequently the overlaps and selection rules in a magnetic field
differ considerably in graphene from that in a normal electron gas. By an-
alyzing the non-equilibrium current dynamics of high-mobility graphene, we
demonstrate that the current dynamics is controlled by oscillations between
Landau levels[141], resembling closely to that in the Jaynes-Cummings or
Rabi models[142].

5.1 The Jaynes-Cummings model

The presence of magnetic field can be taken into account by introducing a
vector potential via the Peierls substitution as π = p+ eA, where p = −i∇,
e is the electric charge and A = (0, Bx, 0) is the vector potential in Landau
gauge, describing a perpendicular magnetic field to the graphene layer. The
corresponding Hamiltonian of a graphene monolayer around the K point is
given by[3]

Hg =

(

∆ vFπ
−

vFπ
+ −∆

)

, (5.1)

where vF = 106 m/s is the Fermi velocity in graphene, π± = πx ± iπy, ∆
represents a sublattice imbalance, a possible excitonic gap[143] or substrate
induced bandgap[144] in epitaxial graphene. Since [π−, π+] = 2eB satisfies
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bosonic commutation relations, we can introduce the creation and annihila-
tion operators of a harmonic oscillator as π+ =

√
2eBa+ and π− =

√
2eBa,

leading to

Hg = vF

(

∆ vF
√
2eBa

vF
√
2eBa+ −∆

)

. (5.2)

This model is connected to the basic model in quantum optics, describing the
interaction of a two level atom or spin 1/2 in a cavity with a single mode elec-
tromagnetic field, known as the Jaynes-Cummings Hamiltonian[142]. Con-
sider a two-state atom or spin 1/2 interacting with monochromatic quantized
electromagnetic field, whose electric part is E ∼ a+a+, while the dipole tran-
sition between the two atomic states are described by d ∼ σx ∼ σ+ + σ−,
leading to the interaction Hint = −V dE with coupling constant V , sketched
in Fig. 5.1. Then, the full Hamiltonian in the rotating wave approximation,
neglecting a+σ+ and aσ− terms, is

HJC = V (a+σ− + σ+a) + ∆σz + ωa+a =

(

∆+ ωa+a V a
V a+ −∆+ ωa+a

)

,

(5.3)

where ∆ is the energy imbalance between the atomic states. The Jaynes-
Cummings model features, among many others, Rabi oscillations, which are
periodic exchange of energy between the electromagnetic field and the two-
level system. It possesses a+a + σz/2 as a conserved quantity, thus it is
integrable. Note that the original version of the model without the rotating
wave approximation was long thought to be non-integrable, and its exact
solution has only been found recently[145].

2∆
V

ω

0

1

2

3

4

0

1

Figure 5.1: Cartoon about the basic ingredients of the Jaynes-Cummings
model. The two level atom (red, left) is coupled via dipole transitions to the
quantized electromagnetic field, denoted by the blue parabola.

With the V = vF
√
2eB (vacuum Rabi frequency) and ω = 0 identifi-

cation, the Jaynes-Cummings model coincides with the Dirac Hamiltonian

62



in a quantizing magnetic field. The electromagnetic field in the former case
plays the role of the raising and lowering operators on the Landau basis,
and the two-state atom or the spin 1/2 in the former is represented by the
pseudospin index in the latter. Albeit the frequency of the electromagnetic
field is zero, the excitation energies of the coupled system depend on the
boson number. The fact that these two Hamiltonian are equivalent to each
other is also related to Zitterbewegung[7, 146, 147], which is caused by the
coupling between states with positive and negative energies (represented by
the Pauli matrices). In the present case, the transition between these states
is provided by the bosonic field a.

The eigenvalues of the Hamiltonian are

Enα = α
√

∆2 + V 2(n+ 1), (5.4)

where n = 0, 1, 2. . . non-negative integer, α = ±. In the non-relativistic
limit (∆≫ V ), the usual Landau level spectrum is obtained as α(∆+ωc(n+
1)) with cyclotron frequency ωc = v2F eB/∆. In addition, there is a special
eigenstate, stemming from the Landau level at the Dirac point with

E∗ = −∆ (5.5)

which formally corresponds to n = −1 and α = −1.

5.2 Real-time current-current correlations

We now turn to the investigation of the σx correlation function, Cxx(t) =
〈σx(t)σx(0)〉. In the case of the Jaynes-Cummings model, it describes the
transitions between the two atomic states, and tells us about the spectrum
of Rabi oscillations[148]. In the case of graphene, σx coincides with the
current operator. This can easily be checked by evaluating the current as the
time derivative of the polarization operator in the Heisenberg picture as jx =
i[H, x] = vFσx, and similarly jy = vFσy, which holds in the presence of the
magnetic field as well. Therefore, Cxx(t) plays the role of the current-current
correlation function in the Dirac case, and leads eventually to the optical
conductivity[14, 149]. Therefore, we expect the well-known Rabi oscillations
of quantum optics characterizing the excitations of the atom to be observable
in the various response functions of Landau quantized Dirac fermions. The
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correlation function is evaluated, following standard manipulation, as

Cxx(t) = gcf(E
∗)
∑

γ=±

exp(i(E0γ + E∗)t)P∗→0γ+

+
∑

n>0,

αγs=±

gcf(Enα) exp(i(Enα + En−sγ)t)Pnα→n−sγ, (5.6)

where f(E) = 1/(exp((E−µ)/T )+1) is the Fermi function, gc = NfAceB/2π
is the degeneracy of the Landau levels and spins, Ac is the area of the unit
cell, to be taken as unity in the Dirac approach, Nf = 2 stands for the spin
degeneracy. The structure of the optical transitions can be readily identified
from this: a Enα Landau level with n > 0 and given α possesses 4 possible
optical transitions to the adjacent levels as En±1±α (on the same side and on
the other side of the Dirac cone), the n = 0 level 3 transitions to E1±α and
E∗ and the E∗ level two transitions to E0±. The non-zero transition matrix
elements are given by

Pnα→n−sγ =
1

4

(

1 +
s∆

Enα

)(

1 +
s∆

En−sγ

)

for n > 0,

P∗→0γ =
1

2

(

1− ∆

E0γ

)

, (5.7)

which satisfy
∑

mγ Pnα→mγ = 1, and agree with the transition probabili-
ties for Rabi oscillations of atoms induced by external electromagnetic field.
These approach 1/4 in the classical limit (of bosons) n → ∞, in which
case the field contains many bosons, whose quantum character can then be
neglected[150]. Interestingly, the ∆ = 0 limit yields the classical matrix el-
ements for any n > 0. However, the E∗ level never reaches the classical
limit, and is responsible for the anomalous optical properties of graphene in
magnetic field[151], see e.g. the discussion below Eq. (1.9). Therefore, all
selection rules and transition probabilities are identical in the two models.

Rabi oscillations occur when the atom repeatedly emits and reabsorbs
radiation. These are also possible in the vacuum of the radiation field, when
the atom is prepared in its excited state, referred to as vacuum-field Rabi
oscillations, which are not captured by the classical treatment of the field.
Therefore, the transition probabilities involving the E∗ level differ from the
other matrix elements due to their quantum mechanical origin.

From the current-current correlation function, the optical conductivity
follows, which agrees with those obtained for graphene with distinct methods[152,
153, 103, 154]. The allowed optical transitions are thus controlled by Eq. (5.7),
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which, together with the relation to the Jaynes-Cummings Hamiltonian pro-
vides us with a particularly simple picture about the optical selection rules
and transitions by relating them to the Rabi oscillations. Therefore, the op-
tical conductivity by varying the frequency sweeps through all possible tran-
sitions, and measures the frequency of the Rabi oscillations, with quantum or
classical character. This provides a unique opportunity to investigate a basic
phenomenon of quantum electrodynamics in a condensed matter experiment.
By changing the external magnetic field applied to graphene, the coupling
between the atom and electromagnetic field in the Jaynes-Cummings model
can be tuned continuously, facilitating the exploration of various regimes, the
quantum to classical crossover.
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Figure 5.2: The real time evolution of Cxx(t) is shown at T = 0, taking both
valley and spin degeneracies into account. We introduced a cutoff D, and
the number of levels is measured as D = V

√
N , corresponding to different

magnetic field strengths. The left/right panels show N = 10000 (blue)/N =
100 (red) with D = V

√
N for (µ,∆)/V

√
N = (0, 0) [a/e], (0.4,0) [b/f],

(0.4,0.2) [c/g], and (0,0.2) [d/h]. These structures correspond to thermal
field induced random oscillation in quantum optics[155].

In quantum optics, one can prepare the initial state of both the atom and
the electromagnetic field freely. The atom is usually in its excited state, and
the field is prepared in a number state or in a coherent state. Then, through
the Jaynes-Cummings Hamiltonian, the time evolution of the atomic popula-
tion can be studied, which exhibits Rabi oscillations, when jumping between
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Figure 5.3: The real time evolution of Cxx(t) is shown for long times for
T = 0, (µ,∆) = (0, 0). We introduced a cutoff D, and the number of levels is
measured as D = V

√
N , corresponding to different magnetic field strengths

with N = 10000 (blue) and N = 100 (red). Collapse and revival shows
up with time similarly to the thermal field Jaynes-Cummings model. The
revivals gradually get wider and overlap. The presence of thermal revivals are
related to the finite average boson number in the Jaynes-Cummings model,
which translate to a finite cutoff in the Dirac case. As opposed to Fig. 5.2,
these revivals at long times are caused by the finite cutoff.

the ground and excited state, causing collapse and revival phenomenon. How-
ever, qualitatively different behaviour describes chaotic or thermal fields[155],
which are characterized by an average boson number. Quiescent periods and
interfering revivals are also present, but the resulting pattern of oscillations
follow an apparently random evolution, as shown in Fig. 5.4.

On the other hand, graphene, as a condensed matter system, does not
allow for an arbitrary preparation of the initial states, but requires thermal,
ensemble averaging. In this respect, it is closer to the second type of thermal
initial condition for the Jaynes-Cummings model. The average boson num-
ber, characterizing the latter corresponds to the total number of fermions in
the latter, determined by the chemical potential and the cutoff. This can be
introduced by the energy scale D = V

√
N + 1, above which we neglect all

states (with n > N). We mention, that the inclusion of a cutoff is required
to obtain correctly the f-sum rule for graphene[156].

The real time evolution of the longitudinal current-current correlation
function based on Eq. (5.6) is shown in Fig. 5.2. Similarly to the Jaynes-
Cummings model[155, 142], the initial collapse is followed by a revival of
oscillation, which are also sensitive to the presence of finite µ and ∆. They
both enlarge the quiescent period after the short time collapse, and cause
additional step-like structures in the envelope of oscillations. For longer
times, collapse and revival is observable in Fig. 5.3, which gradually become
wider and overlap. This revival time depends on the value of the cutoff like
2π
√
N + 1/V = πD/v2FeB, as is apparent from the figure, and is controllable
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Figure 5.4: Population inversion of the Jaynes Cummings model, i.e. the
difference between the expectation values of finding the atom in the excited
and ground state from Ref. [142]. The initial mean photon number is 16.
Top frame shows thermal field, lower frames show a coherent field. Times
are in units of the inverse of the mean Rabi frequency.

by the magnetic field.
The evaluation of the microwave Hall conductivity proceeds through sim-

ilar steps[141] from Cxy = 〈σx(t)σy(0)〉. The transverse current correlator is
evaluated as

Cxy(t) = −igcf(E∗)
∑

γ=±

exp(i(E0γ + E∗)t)P∗→0γ+

+
∑

n>0,

αγs=±

igcf(Enα) exp(i(Enα + En−sγ)t)sPnα→n−sγ, (5.8)

producing the unconventional Hall steps in graphene as a function of µ or
particle density. After Fourier transformation, it gives Eq. (1.10) at zero
temperature.

The time evolution of the Hall correlator is shown in Fig. 5.5, and turns
out to be independent of the applied cutoff scheme, hence universal. It ex-
hibits Rabi oscillations in the original meaning of the word, which vanish
at the Dirac point (this equivalent to the statement, that the Hall conduc-
tivity is zero exactly at the Dirac point). Upon increasing µ, oscillations
appear, showing beating property, observed in the Jaynes-Cummings model
as well[142]. The period of the envelope functions widens with µ, bringing
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Figure 5.5: The real time evolution of Cxy(t) is shown for T = 0. The explicit
value of the number of levels (N) does not influence the resulting pattern.
The chemical potential varied as µ/V = 1.2 [a/d], 3.2 [b/e] and 10 [c/f] with
∆ = 0 (left panel, blue) and ∆ = 2V (right panel, red), and the frequency of
the envelope function is v2F eB/µ, the cyclotron frequency of massless Dirac
fermions. For T = 0 and ∆ > µ, ImCxy(t) = 0. Note the different horizontal
scales!

the relevant timescale to the experimentally measurable domain. The typical
timescale for the evolution of the correlation functions is set by TB = ~/V
upon reinserting original units, which translates into TB =

√

~/2eB/vF , of
the order of 10 femtosecond for a field of 1 T. This is usually enlarged by the
presence of the cutoff for Cxx(T ) and by the chemical potential for Cxy(t).
A possible time limit is provided by impurities, which broaden the Landau
levels, whose effect is taken into account by an additional exp(−Γt) factor.
Therefore, the available time window is restricted to times< 1/Γ.

A possible way to measure these correlation functions is provided through
optical conductivity or current fluctuation measurement. Via the fluctuation
dissipation theorem, they contain the same information, and upon Fourier
transforming from frequency space to get the real time dependence, one is ex-
pected to be able to observe the presence of thermal Rabi oscillations. Similar
measurements have already been carried out without magnetic field[14, 149],
by exploiting the tunability of the carrier concentration with gate voltage.

In conclusion, we have shown that the equivalence of the Hamiltonians of
graphene in magnetic field and of the JC model influences their correlation
functions as well, causing both thermal and coherent Rabi oscillation in the
electric response of graphene[141]. Finally we speculate that Rabi oscillations
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and Zitterbewegung are two closely related phenomena named differently in
different fields of physics, both arising from the coupling of positive and
negative energy states.
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Chapter 6

Floquet topological insulators

Topological insulators are interesting not only for basic research but also due
to their possible application in spintronics and quantum computation. How-
ever, topologically non-trivial materials are rather scarce, therefore various
methods to turn a topologically trivial material to a TI should be warmly
welcome. It is interesting to contemplate different physical mechanisms that
could lead to non-trivial topological properties. Several strategies other than
band structure engineering from the material science do exist. Applying
strain to alter the band structure seems feasible for a variety of materials[157].
Electron-electron interactions can sometimes also produce the desired effect.
Simple mean-field decoupling of the interaction can mimic an effective spin-
orbit coupling, for example, thus inducing a transition from a topologically
trivial to a non-trivial phase [158, 159, 160, 161].

6.1 Time-periodic perturbation

Bloch states and energy bands arise from spatially periodic Hamiltonians
in condensed matter systems. Extending the periodicity in the time domain
through a time-periodic perturbation increases tunability of the Hamiltonian:
the temporal analogue of Bloch states (the Floquet states) can be manipu-
lated via the periodicity and amplitude of the external perturbation[162, 163].
Bloch’s theorem states that the electron wavefunction in a spatially periodic
potential with V (r) = V (r+R) is written as

Ψk(r) = exp(ikr)uk(r), (6.1)

where uk(r) = uk(r+R) = is lattice periodic. Similarly, in the presence
of a time periodic perturbation with H(t) = H(t + T ), Floquet’s theorem
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dictates[164, 165] the wavefunction to take the form

Ψε(t) = exp(−iεt)Φε(t), (6.2)

where Φε(t) = Φε(t+T ) is time periodic and ε is called the Floquet quasienergy.
This is only well defined modulo ω = 2π/T in the Floquet Brillouin zone,
since using the substitutions εn = ε + nω, Φεn(t) = Φε(t) exp(inω) give
identical wavefunctions, which is Bloch’s theorem in the time domain.

Figure 6.1: Left: The energy spectrum of a non-inverted HgTe/CdTe quan-
tum well (inset) and the Floquet quasienergies in the presence of a linearly
polarized perturbation (main panel) with 2 chiral edge modes, traversing the
gap. Pictures taken from Ref. [166]. Right: The energy spectrum of Dirac
electrons near one of the Dirac points is shown for without light (A0 = 0,
upper figure) and the Floquet quasienergies under the application of light
with A0 6= 0 (lower figure), opening a finite gap at the Dirac point. J0 is the
hopping amplitude and a the lattice constant of the graphene honeycomb
lattice. Picture taken from Ref. [167].

Recently, it has been shown that novel topological edge states can be
induced by shining electromagnetic radiation on a topologically trivial in-
sulator, e.g. a non inverted HgTe/CdTe quantum well with no edge state
in the static limit [166]. A linearly polarized light was capable of inverting
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Figure 6.2: The quantum spin-Hall insulator (light yellow rectangle) with
its helical edge state (counterpropagating red/blue arrows) in a circularly
polarized electromagnetic field with frequency ω and wave vector k. In the
plane z = 0 the rotating vector potential A(t) = A0(− sinωt, cosωt) is per-
pendicular to the Sz direction (vertical green arrows). Picture taken from
Ref. [162].

the band-structure, yielding topologically protected edge states, as shown in
Fig. 6.1. It has been predicted that circularly polarized light can open a
gap at the Dirac points[168]. Moreover, it was argued[167] that for small
laser power, the effective Hamiltonian contains an effective spin-orbit cou-
pling term, being identical to the intrinsic spin-orbit coupling in graphene
(Eq. (1.19)). As a result, a topologically protected, light induced gapless
edge mode appears, similarly to that in a quantum spin-Hall insulator[35].
The gap at the Dirac point can be estimated as

∆ = 16πα
v2F I

ω3
sinφ, (6.3)

where I is the laser intensity (W/m2), α ≃ 1/137 is the fine structure constant
and φ tunes the polarization, i.e. circular or linear polarization implies φ =
±π/2 or 0, π, respectively.

We have decided to investigate the fate of a quantum spin-Hall edge
state in the presence of circularly polarized electromagnetic field[162, 163].
A quantum spin-Hall insulator, located in the xy plane, is irradiated by a
circularly polarized electromagnetic field with frequency ω (Fig. 6.2). The
general Hamiltonian of the QSH edge from Eq. (1.20) reads in this setting:

H(t) = vFσ
z(p− eAx(t)) + g

[

σ+ exp(−iωt) + h.c.
]

, (6.4)

where the Pauli matrix σz represents the physical spin of the electron, p the
momentum along the one-dimensional channel and vF the Fermi velocity. It is
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assumed that the quantization axis of the QSH edge state is perpendicular to
the plane xy. The circularly polarized radiation now acts on both the orbital
motion through the vector potential Ax(t) = −A0 sinωt and on the electron
spin through the Zeeman coupling g = geffµBB0, geff being the effective g-
factor and µB the Bohr magneton. The orbital effect can be safely neglected
according to a simple semi-classical argument: an electron travelling at speed
vF in an electric field E0 = A0ω = cB0 during a time 1/ω picks up an energy
vF eE0/ω from the vector potential which has to be compared to the smallest
energy quantum it can absorb, ~ω. Hence in the regime vF eE0/ω ≪ ~ω,
only the time-dependent Zeeman effect is effective and not the orbital effect.
In contrast to this, in other 2D systems the orbital effect is the dominant one
[168, 169, 170, 171, 172].

Eq. (6.4) without the vector potential is exactly solvable[162], since for
a given p, it maps onto the Hamiltonian of a two level system in circularly
polarized electromagnetic field[164, 165], which is the classical version of the
Jaynes-Cummings Hamiltonian[142] in Eq. (5.2) using the correspondence
a ←→ exp(−iωt). It is to time periodic problems what the Landau-Zener
model is to (avoided) level crossings.

6.2 Topological properties and photocurrent

We now analyse the topological invariant describing the steady state of the
QSH edge state in terms of the mapping, (p, t)→ d̂α,p(t) = Φ+

α (p, t)SΦα(p, t) =
α(g cos(ωt), g sin(ωt), vFp−ω/2)/λ, between the 1+1 dimensional (p, t) space
and the unit sphere. Here, α = ±1 distinguishes between the Floquet
bands, which are descendant of the Dirac bands without the field, λ =
√

g2 + (vFp− ω/2)2 and Φα(p, t) is the Floquet wavefunction[162]. The sub-
band Chern number,

Cα =

∞
∫

−∞

dp

4π

T
∫

0

dtd̂α,p(t) ·
(

∂d̂α,p(t)

∂p
× ∂d̂α,p(t)

∂t

)

, (6.5)

counts the number of times the unit vector d̂α,p(t) wraps around the unit
sphere [33, 166, 34], the summation being taken over occupied bands. In
principle the integral goes over a compact manifold like the Brillouin zone.
However, it is enough to calculate the integral of the Berry curvature for
an individual Dirac cone, living on the infinite plane of momenta to get the
topological invariant, since high energy states usually do not contribute much
to topological invariants, see e.g. Ref. [35]. Due the the circularly polarized
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field, a finite photocurrent is generated along the edge by the Zeeman term
as

〈j〉 = e

2π
|ω|C−, (6.6)

which is the incarnation of the magnetoelectric effect, namely that an electric
current is generated by coupling to magnetic fields.

The behavior of this topological invariant (and photocurrent) can be in-
vestigated as a function of the frequency of the driving field. At low fre-
quency, |ω| < 4g, and half filling, the α = −1 band is occupied. Indeed we
have checked numerically that such an initial state below the Fermi level (be-
fore irradiation) will evolve to one of the negative energy Floquet states upon
smoothly branching the time-dependent driving field. Then accordingly the
Chern number

Cα = −
∫ ∞

−∞

dp
αsign(ω)vFg

2

2λ3
= −αsign(ω) (6.7)

is quantized, shown in Fig. 6.3. By contrast, when |ω| > 4g, the two bands
cross, and C− is no longer quantized, in analogy to the transfer of Chern
numbers between equilibrium bands which touch:

Cα = −αsign(ω)
(

1−
∑

s=±1

s

√
2ωsω

ω

)

(6.8)

where 4ω± = ω ±
√

ω2 − 16g2. The Chern number Cα vanishes as Cα =
−α2g/ω for g ≪ |ω|. The quantized photocurrent is lost due to the crossing
of Floquet subbands carrying opposite Chern number. It is remarkable that
the Chern number and the photocurrent are quantized over a broad range of
frequencies, |ω| < 4g, that exceeds the strict adiabatic limit. In this limit,
it can be deduced [173] from the Goldstone-Wilczek formula [174]. The
robustness of the quantization for |ω| < 4g is a feature specific to our model.
It is related to the fact that the gap of the instantaneous Hamiltonian H(t)
never closes for Zeeman coupling and circular polarization. In particular
this quantization still survives for elliptic polarization, upon addition of an
inversion symmetry breaking term and/or in presence of orbital effects[162].

The typical induced photocurrent is estimated by recalling that the g ≪
|ω| regime is realized usually (and note that larger values of ω are beneficial
for neglecting the vector potential), and for a radiation field with magnetic
field strength of the order of 10−4 − 10−5 T, this generates a photocurrent
of the order of 0.1 − 10 pA, depending also on the effective g-factor values.
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Figure 6.3: The induced photocurrent (blue solid line) and the C− Chern
number (black dashed line) are shown as a function of ω/g. The latter
becomes non-quantized when band touching occurs at 4g = |ω|.

These can be significantly enhanced (geff ≈ 20 − 50) for certain materials
such as HgTe/CdTe, HgSe or Bi2Se3.

The induced current can be detected in a contactless measurement. The
photoinduced ”rectified current” being of the order 〈j〉 = 1 pA, the corre-
sponding magnetic field Bind = 1 pT (for a 1 micron perimeter) is within the
detectability limit of an ac SQUID [162].

The topological properties of the edge state are reflected in the induced
magnetization and photocurrent, shown in Fig. 6.3. In the |ω| < 4g regime,
the current is obtained (upon restoring original units) as 〈j〉 = sign(ω)e/T ,
which tells us that the charge pumped within one cycle (T ) is exactly the
unit charge. The integer charge pumped across a 1D insulator in one period
of an (adiabatic) cycle is a topological invariant that characterizes the cycle.
This specific quantization of charge stems directly from the quantized C− =
sign(ω) in this regime, as was identified by Thouless [175]. The current is
dissipationless, protected by a photoinduced gap. Though the current still
satisfies 〈j〉 = eC−/T for |ω| > 4g, it is dissipative and no longer quantized
due to the band touching, in analogy with the photovoltaic Hall effect [168]
in graphene.

We have demonstrated that the topological properties of a spin-Hall edge
state can be altered by irradiating it with a circularly polarized light[162,
163]. Upon increasing its frequency, a topological transition takes place from
dissipationless charge pumping to a dissipative transport regime. Our pre-
dictions could be tested by experiments similar to those in graphene [176]
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and HgTe/CdTe quantum wells [177], they rely on a different coupling mech-
anism, that is Zeeman coupling rather than orbital coupling.
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Chapter 7

Interaction quench in a
Luttinger liquid

As we have seen in the Introduction, the LL physics is rather peculiar as
signalled by the non-integer power law-exponents. Such low dimensional
systems can be driven out of equilibrium through e.g. transport [178, 179],
but here we focus on time dependent changes of the interaction parameter,
which is of particular relevance for cold atomic systems. Sudden quenches
(SQ) of the interaction in LLs have been considered recently by several au-
thors [180, 181, 182], and the properties of the other extreme limit of adi-
abatic parameter ramps has long been investigated. However, experimental
ramps cannot take infinite time, and are not instantaneous, either. Here
we study, how a nonzero quench time, τ 6= 0, influences the final state of
the system after a quantum quench. As we present here, based on Refs.
[183, 184, 185, 186], a finite τ leads to ‘heating’ effects, and generates excita-
tions in the final state. Moreover, it leads to in the appearance of additional
energy (∼ 1/τ) and corresponding length scales: while in certain space-time
regions the system reveals universal near-equilibrium (adiabatic) correlations
[66], in other regimes renormalized Fermi liquid (FL) or sudden quench (SQ)
behavior is found.

Thus motivated, we study the time dependent version of Eq. (1.42) as

H =
∑

q 6=0

ω(q)b†qbq +
g(q, t)

2
[bqb−q + b+q b

+
−q], (7.1)

with ω(q) = v|q| (v being the bare ”sound velocity”). The interaction g
is changed from zero to a nonzero value within a quench time τ , g(q, t) =
g2(q)|q|Q(t), with Q(t) encoding the explicit quench protocol, and satisfying
Q(t > τ) = 1 and Q(t < 0) = 0. In particular, for a linear quench, Q(t) =
tΘ(t(τ − t))/τ +Θ(t− τ) with Θ(t) the Heaviside functions.
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To understand the applicability of the low energy LL description for
quenches, one needs to go beyond the LL paradigm by either considering
additional terms in the Hamiltonian (termed irrelevant in equilibrium) or by
comparing the results of the LL theory to numerical simulations on lattice
models. We have decided to follow the second option, and investigated arbi-
trary rate quenches numerically on the Jz component of the XXZ Heisenberg
model, i.e. by allowing for a JzQ(t) function in Eq. (1.48). Then, these are
compared to bosonization results. Similar approach was undertaken in Ref.
[187] for the case of a sudden interaction quench.

All the numerical simulations, presented in this chapter, were performed
by Frank Pollmann using a combination of a matrix-product state (MPS)
[188] based infinite density matrix renormalization (iDMRG) [189, 190, 191]
and the infinite time evolving block decimation (iTEBD) [192] algorithms
[193, 184]. In the implementation of the two algorithms, infinite, transla-
tionally invariant systems are used. Working in the limit of infinite systems
has the advantage that no finite size effects show up and the only approxima-
tion is the finite bond dimension (χ) of the MPS. In critical systems (as the
one we are studying), the finiteness of χ induces a finite correlation length
ξ ∝ χκ with κ being a model specific parameter [194, 195]. For our sim-
ulations, we check and ensure that the induced correlation length does not
affect our results. First the iDMRG method is used to find the ground state
by optimizing variationally a wavefunction in the MPS representation. Then
the actual quench is simulated using the iTEBD technique. This technique is
based on a Suzuki-Trotter decomposition of the time-evolution operator and
provides an efficient algorithm to perform the real-time evolution of the MPS
during the quench. A time-step of δt = 0.01J−1 together with a second-order
Trotter decomposition are used.

The time evolution in Eq. (7.1) is attacked by the Heisenberg equation
of motion, leading to

i∂tbq = [bq, H ] = ω(q) bq + g(q, t) b+−q, (7.2)

and similarly to ∂tb
+
−q. These are solved by a time-dependent Bogoliubov

coefficients as

bq(t) = u(q, t) bq(0) + v∗(q, t) b+−q(0) , (7.3)

where all the time dependence is carried by the prefactors, u(q, t) and v(q, t),
and the operators on the r.h.s. refer to non-interacting bosons before the
quench. All expectation values are taken in terms of the initial density matrix
of the latter. The bosonic nature of the quasiparticles requires |u(q, t)|2 −
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|v(q, t)|2 = 1. From Eqs. (7.2)-(7.3), we obtain

i∂t

[

u(q, t)
v(q, t)

]

=

[

ω(q) g(q, t)
−g(q, t) −ω(q)

] [

u(q, t)
v(q, t)

]

, (7.4)

with the initial condition u(q, 0) = 1, v(q, 0) = 0. By Eq. (7.4), all time
dependence has been transferred to the Bogoliubov coefficients, and therefore
expectation values of the time dependent bosonic modes and non-equilibrium
dynamics are calculable using standard techniques developed for equilibrium
[71], once the solutions of Eq. (7.4) are known.

From Eq. (7.4), the adiabatic limit follows from replacing g(q, t) with
its time independent final value, and looking for the stationary solutions of
Eq. (7.4) at a given energy while ignoring the initial conditions. The SQ
limit requires only the replacement of g(q, t) by its final, time independent
value, and solving the resulting linear differential equation with the initial
conditions satisfied.

For a linear quench, Eq. (7.4) realizes the non-hermitian Landau-Zener
model [196], which can be solved exactly in terms of the parabolic cylin-
der function. However, the exact solution does not yield an immediate and
transparent physical picture, similarly to the hermitian Landau-Zener model
in Eq. (1.23). To obtain more insight, we assume that g(q, t) ≪ ω(q) (i.e.,
g2(q) ≪ v) for all t and q, and solve Eq. (7.4) perturbatively in the interac-
tion. To lowest order in g2(q), we obtain u(q, t) ≈ exp(−iω(q)t) and

v(q, t > 0) ≈ i

∫ t

0

dt′g(q, t′) exp(iω(q)(t− 2t′)) . (7.5)

We have also checked numerically that Eq. (7.5) is indeed applicable for any
t and τ , as long as g2(q)≪ v, and the the solution can easily be extended to
include higher powers of g2(q) for a linear quench. In the SQ (τ → 0) and
adiabatic (τ →∞) limits we obtain

v(q, t > τ) ≈ g2(q)

2v
×
{

2i sin(ω(q)t) for τ → 0,
− exp(−iω(q)t) for τ →∞,

(7.6)

reproducing to lowest order in g2(q) the SQ results [180, 182] and the equi-
librium Bogoliubov transformation [77, 71], respectively.

After the quench (t > 0), the expectation value of the total energy, for
〈H(t)〉 is obtained as[183]

〈H〉 =
∑

q 6=0

Im[v∗(q, t)∂tv(q, t)] ,
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Figure 7.1: The heating is plotted from iTEBD for Jz/J = 0.1 (blue circles),
0.2 (red squares) and 0.4 (green triangles) together with the prediction of
Eq. (7.7) (black solid line), using R0 = 2vτ0 = 0.5622 (from Fig. 7.4). The
agreement remains excellent for small variations of R0 as well.

at T = 0. This expression is time independent for t > τ , as expected. For
t > τ , and an interaction of finite range, g2(q) = g2 exp(−R0|q|/2), we obtain
for a linear quench

〈H〉 = Egs

[

1−
(τ0
τ

)2

ln

(

1 +

(

τ

τ0

)2
)]

(7.7)

for a linear quench, τ0 ≡ R0/2v, and Egs = −Lg22/4πvR2
0 is the adiabatic

ground state energy shift to lowest order in g2, with L the system size. The
second term corresponds to quasiparticle excitations resulting from the fi-
nite quench speed. In the SQ limit, τ ≪ τ0, the energy of the system is
only slightly shifted[197], 〈H〉 = Egs(τ/τ0)

2/2. This holds true for a general
quench, i.e. 〈H〉 ∼ (τ/τ0)

2 when τ → 0 with a quench dependent coeffi-
cient. In the adiabatic limit, τ ≫ τ0, on the other hand, the excess energy
(or “heating”) vanishes as −2Egs ln(τ/τ0) τ

2
0 /τ

2 in accord with the so-called
analytic response of Ref. [198]. The crossover between the SQ and adiabatic
limits occurs when τ ∼ τ0, which typically translates to τ ∼ 1/J in an opti-
cal lattice, with J the hopping integral in the underlying microscopic lattice
Hamiltonian, see e.g. Eq. (1.48).

The heating in the near-adiabatic limit in 1D gapless systems has been
addressed in Refs. [199, 197], and non-universal behaviors were found. The
universal ln(τ)/τ 2 heating seen in Eq. (7.7) was mentioned previously in
Ref. [198]. In Fig. 7.1, we compare Eq. (7.7) to the numerical result on XXZ
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Heisenberg model in Eq. (1.48), after linearly switching on the interaction,
using R0 = 0.5622 as the only free parameter, what we obtain from the
bosonic density matrix, and obtain excellent agreement, especially for near-
adiabatic quenches.

7.1 Fermionic density matrix

The expectation value of the heating does not depend on the statistics of
the original interacting model, i.e. whether we had interacting fermions or
bosons, but correlation functions do. Let us start with the discussion of the
fermionic correlators. In this context, the structure of the non-equilibrium
dynamics can be well demonstrated by means of the fermionic one-particle
density matrix. Since the fermion field decomposes to right-going and a left-
going parts (see. Eq. (1.35)), it is enough to concentrate on the right-going
part of the density matrix,

Gr(x, t) ≡ 〈R+(x, t)R(0, t)〉 , (7.8)

describing excitations around the right Fermi momentum, k ≈ kF . The
right-going field, R(x), can be expressed in terms of the LL bosons as in Eq.
(1.36). The expectation value of the above correlator is evaluated following
standard steps [71, 72]. In essence, these rely on the observation[74], that for
a random variable, ξ with Gaussian probability distribution with zero mean,

〈exp(iξ)〉 = exp

(

−〈ξ
2〉
2

)

. (7.9)

We then obtain at T = 0

Gr(x, t) = G0
r(x) exp

(

−
∑

q>0

(

8π

qL

)

sin2
(qx

2

)

|v(q, t)2|
)

, (7.10)

where G0
r(x) = i/(2π(x+ iα)) denotes the free fermion propagator, with α

an ultraviolet regulator. It depends only on v(q, t), i.e. the mixing between
bq and b+−q determines the dynamics.

Although the above summation can be transformed to an integral in the
thermodynamic limit (L → ∞), which can be performed analytically at
T = 0, it contains many terms and does not provide us with an intuitive
picture about the underlying non-equilibrium dynamics. Therefore, we have
expanded these results in various regimes to pinpoint the involved processes.
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Figure 7.2: Left: the long time (τ ≪ t → ∞), steady state limit of the
one-particle density matrix is plotted on loglog scale for a linear quench
and 2g2 = v as a function of |x|, exhibiting the crossover from adiabatic
behavior (lower line in Eq. (7.11)) at small |x| to SQ behavior with adiabatic
enhancement (upper line in Eq. (7.11)) at large |x|. The curves are plotted
for τ/2τ0 = 104, 4 × 104 and 16 × 104 from bottom to top in both panels.
Right: Landau’s quasiparticle weight, Z(t) is plotted on a loglog scale as a
function of t, bridging between the weakly interacting Fermi liquid to strongly
suppressed Z ≪ 1 with adiabatic enhancement (Eq. (7.12)). Inset: the linear
quench protocol is shown.

Let us first discuss the properties of Gr(x, t) long after the quench, t≫ τ .
In this limit, independently of the quench protocol, Q(t), the one-particle
density matrix exhibits universal properties,

Gr(x, t)

G0
r(x)

∼















A (τ/τ0)

(

R0

min{|x|, 2vt}

)γSQ

for |x| ≫ 2vτ,
(

R0

|x|

)γad

for |x| ≪ 2vτ,
(7.11)

where γSQ = g22/v
2 + . . . and γad = g22/2v

2 + . . . denote the perturbative
sudden quench and adiabatic exponents, respectively. The prefactor A (τ/τ0)
depends on the speed of the quench: For a sudden quench it is A(τ ≪ τ0) ∼ 1,
while for slower quenches A(τ > τ0) ∼ (τ/τ0)

γad.
Thus even for t → ∞, instead of one single power-law, Gr interpolates

between the SQ and adiabatic limits. This is shown in Fig. 7.2 for a linear
quench[183]. Physically, the crossover behavior ofGr is understood as follows:
a finite-time quench is experienced by low energy excitations, ω(q) < 1/τ as
a sudden change, while high energy excitations with ω(q) > 1/τ can adjust
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to the change in the interaction strength adiabatically. Since high (small)
energy excitations determine the short (long) distance correlations, the tail of
Gr is governed by the SQ exponent [180], while the short distance behavior is
described by the adiabatic exponent. For slow quenches, τ ≫ τ0, the quench
time manifests itself explicitly through an adiabatically enhanced prefactor
A ∼ (τ/τ0)

γad of the asymptotic tail as also shown in Fig. 7.2. Thus while
the spatial decay of Eq. (7.11) contains the SQ exponent, its τ dependence
reveals the adiabatic LL exponent. For a finite t≫ τ but 2vt≪ |x|, Gr(x, t)
decays asymptotically as iZ(t)/2πx, with a finite quasi-particle weight,

Z(t≫ τ, τ0) ∼ A(τ/τ0)
(τ0
t

)γSQ
. (7.12)

Thus the exponent observed in Z(t) is identically γSQ for t≫ τ , but the finite
quench time amounts in a quasiparticle weight increased by a factor, A ∼
(τ/τ0)

γad for τ ≫ τ0. Although these results were obtained perturbatively,
we expect them to carry over in the non-perturbative limit, except that the
exponents γSQ and γad must be replaced by their exact value.

All these spatial features appear also in the time-dependent momentum
distribution of the fermions, n(k, t), directly measurable through time of
flight experiments. In particular, at T = 0 and finite t≫ τ , n(k, t) exhibits
a jump of size ∼ Z(t) at k = kF , while it approximately scales for |k̃| ≫ 1/2vt
as

n(k)− 1

2
∼ −sign(k̃)×

{

A(τ/τ0) |k̃R0|γSQ , |k̃| ≪ 1
2vτ

,

|k̃R0|γad , |k̃| ≫ 1
2vτ

,
(7.13)

for k̃ ≡ k − kF , |k̃| ≪ kF , and t ≫ τ . Thus the time scale of the quench is
also imprinted in the momentum distribution, which also shows a crossover
behavior between the SQ and the adiabatic limits. For adiabatic quenches,
τ → ∞, we recover the equilibrium LL exponent, while close to kF , the
momentum distribution is enhanced by a factor A(τ/τ0) compared to the SQ
behavior[180, 182].

The above analysis can be extended to the short time region, t ≪ τ ,
where the behavior found depends explicitly on the quench protocol[183] as

Gr(x, t) ∼ G0
r(x)

(

R0

min{|x|, 2vt}

)γ(t)

, (7.14)

where γ(t) = g22Q
2(t)/2v2 + . . . . In short distance region, |x| ≪ 2vt, the

spatial correlations are characterized by a weakly interacting LL with time-
dependent exponents (t-LL). For |x| ≫ 2vt, on the other hand, similar to
t ≫ τ , correlations remain almost unaffected by interaction, and a Fermi
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Figure 7.3: The schematic universal spatial-temporal characteristics of a
quenched LL, with the boundaries denoting crossovers. In the adiabatic
LL regime, the LL exponent of the final state, γad governs spatial corre-
lations, while in the SQ LL region, correlations decay with the SQ expo-
nent, γSQ > γad. Correlations are adiabatically increased by an amplitude,
A ∼ (τ/τ0)

γad in the shaded region. In the Fermi liquid region a time de-
pendent quasiparticle residue is found (see Eq. (7.15)), while in the time-
dependent LL (t-LL) region a quench protocol-dependent weakly interacting
LL is found with a time dependent exponent, Eq. (7.14). The dashed line
denotes |x| = 2vt, i.e. the light-cone[64]. For τ ≪ τ0, the SQ physics of
Ref. [180, 182] dominates everywhere.

liquid regime is found. For t ≪ τ0, Z(t) ≃ 1 as in the initial Fermi gas, but
for t ≫ τ0 we recover a Fermi liquid behavior with a reduced quasiparticle
weight as

Z(τ0 ≪ t≪ τ) ∼
(τ0
t

)γ(t)

(7.15)

The quasiparticle weight thus slowly decreases during the quench, and
excitations remain similar to those in the initial Fermi gas with a reduced
weight (Z < 1) for t < τ . After the quench, t > τ , the quasiparticle weight
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continues to decrease as a power-law, and it resembles to an interacting heavy
fermi system with 1/x spatial decay and Z ≪ 1 quasiparticle residue, Eq.
(7.12), as was also found for sudden quenches [181, 182]. This situation is
shown in detail in Fig. 7.2, where Z(t) is plotted for the special case of a
linear quench[183]. Our results are summarized in Fig. 7.3.

7.2 Density matrix of hard core bosons from

the XXZ Heisenberg model

The excess energy could have in principle been obtained by using adiabatic
perturbation theory [200], since our perturbative results from Eq. (7.5) cap-
ture only the lowest order correction in Jz/J to the above physical quantities.
Therefore, we now focus on the spin flip correlation function 〈S+S−〉, which
contains the bosonic fields in the exponent, similarly to the fermionic case
and demonstrates the non-perturbative nature of bosonization: the present
approach yields to first correction in Jz to the exponent of the spin-flip cor-
relation function. Perturbation theory would only yield the lowest order
correction to the whole correlator, and not to its exponent. Thus, it requires
the non-perturbativeness of bosonization to account for the numerical data
and to produce power-law correlation functions.

The most singular, staggered part of the transverse magnetization [72],
which is directly related to the hard core boson creation operator, is given
by

S+(x) =
(−1)x√
2πα

exp(−iθ(x)), (7.16)

where

θ(x) =
∑

q 6=0

√

π

2|q|Lsgn(q) exp

(

−α|q|
2

)

(

exp(iqx)bq + exp(−iqx)b+q
)

.

(7.17)

S+(x) is also the hard core boson creation operator in the continuum limit,
and α is a short distance cutoff. The θ(x) function differs from φ+(x) from
Eq. (1.44) by containing negative q modes, which is the direct consequence
of the Jordan-Wigner string operator in Eq. (1.50), responsible for the trans-
formation of fermions into hard-core bosons.

The spin flip correlation function of the XXZ model, which corresponds
to the hard-core boson single particle density matrix, is obtained as

GB(x, t) = 〈S+(x, t)S−(0, t)〉, (7.18)
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which is evaluated similarly to Eq. (7.8) using Eq. (7.9).
Right after the quench at t = τ and in the |x|, vτ ≫ R0 limit, the spin

flip correlation function reads as

GB(x, τ) ≈
C(−1)x
√

|x|
exp

(

− g2
2v

f
( x

2vτ

))

(

R0

x

)g2/2v

, (7.19)

where C =
√
e2−1/3A−6 stems from the correlator of hard core bosons on

a lattice in, e.g., the XY model (g2 = 0), A = 1.28243 . . . is Glaisher’s
constant [201]. These non-perturbative results are tested against numerics
in Fig. 7.4, where we fix R0 = 0.5622 from Fig. 7.4. Similarly to the previous
comparisons, the agreement is excellent and works qualitatively upto rather
large Jz.
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Figure 7.4: The spin flip correlation function is shown for Jz/J = 0.1 (left
panel), 0.2 (middle panel) and 0.4 (right panel) for Jτ = 0, 20.2 and 108.3
from top to bottom with R0 = 0.5622 from Eq. (7.19), together with the
numerical data. The power-law exponent changes from −1

2
− Jz

πJ
for x≪ vτ

to −1
2
for x ≫ vτ , as |G(B(x, τ)|

√

|x| ≈ C(R0/min[x, 2vτ/e])g2/2v. Results
from the XY model [201] fix the prefactor of the correlation function as well,
leaving R0 as the only adjustable parameter. The τ = 0 results correspond
to that in the XX Heisenberg model [201]. At short distances, the correlator
is strongly influenced by the presence of the lattice.

The short distance behaviour (< vτ) in Fig. 7.4 is dominated by high
energy (> 1/τ) modes, evolving adiabatically. The correlators thus behave
identically to the adiabatic case (τ → ∞). However, the long distance (>
vτ) response is dictated by low energy (< 1/τ) modes, feeling a sudden
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quench, and the observables in this range reveal the sudden quench behaviour
(τ → 0). We have also checked that the numerical data for time dependent
correlators are also successfully described by our bosonization scheme.

After the quench (t ≫ τ), Eq. (7.18) still applies after changing τ to t.
The momentum distribution (MD), i.e. the spatial Fourier transform of Eq.
(7.18), to first order in g2 behaves as

n(k̃, t) ∼ k̃−1/2 max

(

R0k̃,
R0

vt

)−g2/2v

, (7.20)

where k̃ = ||k| − π|. In the steady state, it remains identical to the adia-
batic expression[71, 72] in spite of the quench, as opposed to the fermionic
case in Eq. (7.13), which highlight the essential role of the string operators
∑

m<l nm in the Jordan-Wigner transformation in Eq. (1.50). Had we taken
a ferromagnetic coupling (J < 0), the divergence would occur at k = 0 as is
the case normally for hard core bosons [202]. The steady state (t→ ∞) re-
sponse thus coincides with the equilibrium one to first order in the exponent,
irrespective of the quench time. Higher order terms, however, will modify
the exponent [183]. Eq. (7.20) is directly accessible experimentally using
time-of-flight imaging of quenched hard core bosons, similarly to fermions.

To summarize, we have applied the Luttinger model description for a
lattice model outside the usual equilibrium description, by deriving quanti-
ties using an out-of-equilibrium Luttinger liquid theory and comparing them
to exact numerical calculations on the XXZ chain[184]. Remarkably, even
though our bosonization calculations are perturbative in Jz, they provide an
excellent quantitative description even for moderately large Jz values.

7.3 Statistics of work done during a quantum

quench

So far, we have concentrated on simple physical observables such as the en-
ergy of single particle density matrix, which can be expressed in terms of few
point correlation functions. We have shown that the time-dependent Lut-
tinger model describes successfully such instances. However, it is not clear
whether arbitrary high order correlators can also be well described using the
present approach. Additionally, the full characterization of a quantum state
is only possible through its all higher moments, encoding unique informa-
tion about non-local correlations of arbitrary order and entanglement[203],
similarly to how a random variable is characterized by all of its moments or
equivalently, by its probability distribution function. Thus, calculating all
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possible arbitrary order correlations functions is equivalent to determining
the full distribution function of the quantity of interest. While its equilibrium
evaluation is already rather involved[203], obtaining the full non-equilibrium
distribution function of a physical observable has rarely been carried out[204].

Recently, using recent developments in non-equilibrium statistical physics,
a delightful exception is found, which is the statistics of work done during
a quench, which has been studied in Refs. [205, 206] for a sudden quench
between gapped phases, separated by a quantum critical point. The proba-
bility distribution function (PDF) of work done, P (W ), involves all possible
moments of energy[207], thus providing us with full characterization of the
energy distribution.

The goal of this section is to calculate the PDF of work done on a Lut-
tinger liquid after an interaction quench[185], and construct explicitly the
diagonal ensemble which reproduces all moments of P (W ). We remark that
this is one of the rare occasions, where the diagonal ensemble can be con-
structed analytically for an interacting model.

To this end, we consider the the time-dependent Luttinger model from
Eq. (1.42), which is interaction quenched by a given protocol into a final LL
liquid state, as described by Eq. (7.1).

Armed with the formal solution of the time-dependent Bogoliubov equa-
tions, Eq. (7.3), we analyze the statistics of work done. Albeit the work done
has been studied in classical statistical mechanics exhaustively, its quantum
generalization has been carried out only recently [207], and its properties are
known for very few systems. The quantum work cannot be represented by
a single Hermitian operator (⇔ work is not an observable[208]), but rather
its characterization requires two successive energy measurements, one before
and one after the time dependent protocol (thus work characterizes a pro-
cess). The knowledge of all possible outcomes of such measurements yields
the full probability distribution function (PDF) of work done on the system.

The characteristic function of work after the quench, which is the Fourier
transform of the PDF of work, P (W ), can be expressed as [207]

G(λ, τ) = 〈exp[iλHH(t > τ)] exp[−iλHH(0)]〉 , (7.21)

where HH(t) is the Hamilton in the Heisenberg picture, and the expectation
value is taken with the initial thermal state. For a sudden quench (SQ),
τ = 0, and G(λ, τ) coincides with the Loschmidt echo [205], to be discussed
in more detail at the end of this chapter. The expectation value of the
characteristic function of work done is independent of t for t > τ , but depends
on the details of the quench protocol. HH(t) is obtained by expressing the
time dependent boson operators in Eq. (7.1) using Eq. (7.3). Eq. (7.21) can

90



then be evaluated at T = 0 upon realizing that the operators

K0(q) = (b+q bq + b−qb
+
−q)/2, K+(q) = b+q b

+
−q, K−(q) = bqb−q (7.22)

are the generators of a SU(1,1) Lie algebra, satisfying

[K+(q), K−(q)] = −2K0(q), [K0(q), K±(q)] = ±K±(q), (7.23)

and the operators for distinct q’s commute with each other. Using Ref. [185],
we finally obtain

ln G(λ, τ) = iλEad −
∑

q>0

ln
(

1 + nq(1− e2iΩqλ)
)

, (7.24)

with Ead = Ef−Ei the difference between the adiabatic ground state energies
in the final and initial state, and nq = [ωq(t)− Ωq + 2Im{v∗q (t)∂tvq(t)}]/2Ωq

the time independent occupation number of mode q in the final LL state,

and Ωq =
√

ω2
q (t > τ)− g2q(t > τ) the corresponding excitation energy [71].

Eq. (7.24) depends only on the occupation numbers of the steady state
therefore the diagonal ensemble may describe the final state [66]. The an-
alytic construction of the final density matrix is very hard. Therefore, one
typically focuses only on few body observables, and tries to build an ap-
proximate density matrix describing these. Such an approach is, however,
not sufficient to account for the complete PDF of work, which depends on
all possible moments of energy. In. Ref. [185], we have constructed explic-
itly the density matrix of the diagonal ensemble for the Luttinger model,
describing arbitrary order correlation functions after the quench.

To obtain an analytical understanding of the PDF of work, we expand Eq.
(7.24) for small g2(q). For large system sizes L, the characteristic function
of work done reads as

lnG(λ, τ)

iEad

= λ−
τ
∫

0

τ
∫

0

dt1dt2Q
′(t1)Q

′(t2)τ0 [f(t1 − t2 + λ)− f(t1 − t2)] .

(7.25)

Here Ead < 0 is defined in Eq. (7.7) and f(t) = τ0/(t+ iτ0). The cumulants,
Cn of the work done can be derived by expanding Eq. (7.25) in power series

as ln
(

G̃(λ, τ)
)

=
∑∞

n=1Cn(iλ)
n/n!, and are shown in Fig. 7.5.

To analyze the PDF of work, we introduce the dimensionless work, mea-
sured with respect to the adiabatic ground state energy shift,

w ≡ (W − Ead)/|Ead| . (7.26)
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The distribution of w is then obtained by the Fourier transform of its char-
acteristic function,

p(w) = Pad δ(w) + ρ(w) . (7.27)

The Dirac-delta peak corresponds to the probability of staying in the adia-
batic ground state, while the broad structure ρ(w) is associated with transi-
tions to excited states with w > 0.

In the adiabatic limit (τ →∞), a finite system always stays in its ground
state, and the time evolved wave function coincides with the lowest energy
eigenfunction of the instantaneous Schrödinger equation [209]. Consequently,
only the first term remains in Eq. (7.27) with Pad = 1. For τ ≪ τ0, on the
other hand, Pad scales as ∼ exp(−α) ∼ exp(−cst. L) (see Fig. 7.6), and
in the limit L → ∞ — but fixed interaction — Pad vanishes due to the
orthogonality catastrophe. Here, α = |Eadτ0| ∼ N(g2/v)

2 denotes the total
angle of Bogoliubov rotations (N ∼ L/vτ0 is the number of particles), and
can be viewed as the many-body orthogonality exponent. It is also closely
related to the fidelity susceptibility [210]: α ≷ 1 describes the thermodynamic
/ small system limits [210].

In the extreme SQ limit [182, 180, 181] τ ≪ τ0, G(λ, τ) simplifies to
G(λ) = exp [iEadλ

2/(λ+ iτ0)], and the continuum part of the PDF of work
is evaluated exactly as

ρSQ(w) = Pad exp(−αw) α w−1/2 I1
(

2α
√
w
)

, (7.28)
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Figure 7.6: The PDF of work done on a LL is plotted after a linear quench
from the numerical evaluation of Eq. (7.25) (blue solid line). Top left panel:
α = 20 with τ̃ = 0, 1, 2.5 and 5 from right to left and 180 (inset, P (W > Ead)
only); Top right panel: α = 4 with τ̃ = 0, 1, 2 and 4 with increasing peak
height and 55 (inset); bottom panel: α = 0.2 with τ̃ = 0, 2, 5, and 25 from
right to left. The thick magenta line denotes the exact SQ expression (Eq.
(7.28)), the red dashed line represent Eq. (7.31), the thin black line in the
middle panel visualizes Eq. (7.30), while the green dash-dotted line shows the
result in the small system limit[185]. The vertical arrow at W = Ead denotes
the Dirac-delta peak, whose spectral weight Pad is shown in the inset of the
right panel on semilog scale as a function of the ramp time τ .

with Pad = exp(−α) and I1(x) the modified Bessel function of the first kind.
This is the non-central χ2 distribution with non-centrality parameter 4α in
the limit of zero degrees of freedom [211]. The average work is zero [183],
since for a SQ the system remains in its initial state and — on average —
there is no back reaction. Entropy is, however, generated by populating high
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and low energy configurations.
The shape of ρ(w) depends crucially on the orthogonality parameter, α.

The thermodynamic limit, α ≫ 1 reveals universal behaviour: almost all
probability weight is carried by a peak centered at around W = 0 (w = 1)
and of width ∆W ∼ |Ead|/

√
α,

ρα≫1
SQ (w ≫ α−2) ≈

exp
(

−α [1−√w]2
)

w3/4
√
4πα−1

, (7.29)

whose high energy tail decays according to the Gamma distribution, ∼
exp(−αw)/w3/4. In the small system regime α ≪ 1, on the other hand,
the delta function retains almost all spectral weight, and transfers only a
fraction ∼ α to an exponential distribution of width ∆W ∼ |Ead|/α and
threshold at Ead for w ≪ α−2. In the crossover regime, α ∼ 1, the maximum
shifts to lower energies and the PDF of work develops a sizable value right
above the threshold at Ead (see Fig. 7.6). The maximum of P (W ) occurs at
W > Ead for α > 2, while the PDF becomes monotonically decreasing for
α < 2.

For finite quenches times, in addition to the orthogonality parameter
α, the work statistics also depends on τ and the protocol Q(t) itself. For
definiteness, we focus here on a linear quench, and measure the degree of
adiabaticity by τ̃ = τ/τ0.

For a finite duration quench, τ̃ > 1, only a fraction 1/τ̃ of the excitations
experiences the quench as sudden. Consequently, in the expression of Pad,
the orthogonality exponent α is replaced by ατ ∼ α/τ̃ , and Pad becomes
a monotonously increasing function of τ̃ (see Fig. 7.6). The crossover with
increasing ατ from Pad . 1 to vanishingly small spectral weight, Pad, occurs
at α ∼ τ̃ .

Close to the threshold, W − Ead ≪ 1/τ , only states with energy smaller
than 1/τ and thus feeling a SQ contribute to work. Therefore, apart from
a normalization factor, the PDF of work agrees with the SQ result and we
obtain

ρ(w ≪ α−1τ̃−1) ≈ Pad exp(α)ρSQ(w) , (7.30)

and depends on τ only through Pad.
For τ̃ ≫ 1, however, Eq. (7.30) describes only a small region close to Ead

(see thin black lines in Fig. 7.6), and the overall shape depends both on α and
τ̃ . For 4α≫ τ̃ , almost all spectral weight is carried by the non-adiabatic pro-
cesses (ρ(w)) around the typical value Wtyp − Ead ∼ 2|Ead| ln(τ̃)/τ̃ 2, clearly
separated from the adiabatic process. For τ̃ ≫ 4α, the adiabatic process
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gains spectral weight, Pad ≈ 1, but a maximum forW > Ead remains present,
though it gradually merges with the adiabatic processes.

In the small system limit ατ ≪ 1, the system evolves almost adiabatically,
non-adiabatic processes have only a small probability ∼ α/τ̃ , and the typical
work done in case of a rare non-adiabatic process is Wtyp ≈ −α2π/τ .

Increasing α, the zeros of the PDF turn gradually into dips, and the PDF
develops a more universal form. In the thermodynamic limit ατ ≫ 1, using
the method of steepest descent we obtain

ρ(w) ≈ Padτ̃
3/2
√
α

2
√

tan3(s)π
exp

(

w

(

τ̃ 2

2
− α

)

+ 2
αs

τ̃

)

(7.31)

for αs ≫ τ̃ , with s ≡ arctan[
√

exp(wτ̃ 2)− 1]. For w ≫ 1/τ̃ 2 ≫ 1/α2, ρ(w)
in Eq. (7.31) behaves as a generalized Gumbel distribution of index a = 1

2
+

2α
τ̃2

[212]. This latter emerges in the context of global fluctuations, describing
the limit distribution of the a-th maximum of a sequence of independent
and identically distributed random variables [203]. The distribution in the
1/τ̃ 2 ≫ w ≫ 1/α2 region resembles closely to Eq. (7.29) apart from its
normalization.

Experimentally, these results can be tested on one-dimensional hard-core
bosons [213] or non-interacting fermions as initial states. The detection of
the PDF of work requires two energy measurements, one before and one after
the time dependent protocol. The first energy measurement can be omitted
if we prepare the initial wave function in an energy eigenstate of H(t = 0).
The resulting energy distribution can then be probed using time-of-flight
experiments [66, 63], similarly to Ref. [214]. The crossover between the
various regimes can be monitored by tuning τ/τ0 and α ∼ N (g2/v)

2, where
N is the number of particles in a 1D trap, typically with N ∼ 102 - 103

atoms [70, 67, 69]. By choosing g2/v ∼ 1/
√
N , α becomes of order unity,

facilitating the observation of crossover between the various regimes. For
one-dimensional interacting bosons (i.e. Bose-Hubbard model), v ∼ J and
g2 ∼ J2/U for U ≫ J (close to the hard-core boson limit) with U the on-site
interaction [98] and J the hopping amplitude. By quenching away from the
initial U ≫ J ⇔ g2 ≈ 0 limit (e.g. by changing the lattice parameters or
tuning the Feshbach resonance), a final interaction U ∼ J

√
N is reachable.

For weakly interacting fermions, v ∼ J and g2 ∼ U , therefore ramping from
the weakly interacting case to U ∼ J/

√
N is desirable.

We have studied the PDF of work done on a LL after an interaction
quench[185]. The PDF exhibits markedly different characteristics depending
on the system size, quench duration and interaction strength.
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7.4 Loschmidt echo in LLs and in the XXZ

Heisenberg chain

The Loschmidt echo (LE) provides direct insight into the dynamical prop-
erties of the quantum-many body state, without reference to any particular
observable. It is defined as the overlap of two wave functions, |Ψ0(t)〉 and
|Ψ(t)〉, evolved from the same initial state, but with different Hamiltonians,
H0 and H ,

L(t) ≡ |〈Ψ0(t)|Ψ(t)〉|2 . (7.32)

Josef Loschmidt was an Austrian scientist, who became famous by his cri-
tique to Ludwig Boltzmann’s work on the entropy, known as the reversibility
paradox. According to Boltzmann, during the time evolution of a system,
its entropy should increase with time. Loschmidt pointed out that by revers-
ing the time at the end and evolving the final state backwards, the entropy
must decrease. Therefore, Eq. (7.32) reflects Loschmidt’s idea and measures
the ”distance” between two quantum states and quantifies irreversibility and
chaos in quantum mechanics[215, 216, 217]. Furthermore, it can be used to
diagnose quantum phase transitions[209], and is also an important quantity in
various fields of physics, ranging from nuclear magnetic resonance to quantum
computation and information theory. While the LE for local perturbations,
which is related to the X-ray edge singularity, is well understood, its behavior
in quantum many-body systems is poorly described [218, 219, 220, 221].

Here we study the interaction driven LE of a genuine interacting one-

SQUID

Luttinger

  liquid

Figure 7.7: Schematics of the experimental setup. The black segments on
the SQUID denote the Josephson junctions, the arrows stand for the total
magnetic field. By changing the eigenstate of the flux qubit, the total flux
hence the total magnetic field changes, controlling the Feshbach resonance
in the cold atomic LL.
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dimensional system, a Luttinger liquid (LL). We evaluate the LE within the
Luttinger liquid (LL) description for a time dependent Hamiltonian. To test
and validate the LL predictions, which neglects many irrelevant terms, we
also investigate numerically the XXZ Heisenberg chain, containing all sorts
of irrelevant terms [71], using MPS based methods. An experimental setup
is also proposed to measure the LE of a Luttinger liquid, where a flux qubit
coupled to a Feshbach resonance is used to control the interaction in one-
dimensional cold atom gas (see Fig. 7.7).

We start from a more general setting than in Eq. (1.42), where already
the initial LL state is interacting as

H0 =
∑

q 6=0

(

ωqa
+
q aq +

gi(q)

2
[aqa−q + a+q a

+
−q]

)

, (7.33)

where gi(q) is the initial interaction. We assume that H = H(t) has the same
form as Eq. (7.33), but with a time dependent coupling,

gq → gq(t) = gi(q) + ∆gq(t), (7.34)

where ∆gq(t) = [gf(q)−gi(q)]Q(t), and gf(q) is the final interaction strength,
and Q(t) encodes again the details of the quench protocol.

The Hamiltonian H(t) is quadratic, and can be diagonalized at any
instance. Its initial and final quasiparticle spectra are simply given by
ωi/f (q) = (ω2

q − g2i/f (q))
1/2, and the strength of interaction in these states

is conveniently characterized by the dimensionless LL parameters,

Ki/f =

√

ωq − gi/f (q)

ωq + gi/f(q)
. (7.35)

We first diagonalize Eq. (7.33) by a standard, time independent Bogoliubov
transformation. In this basis, H(t) reads

H =
∑

q 6=0

ω(q, t)b+q bq +
g(q, t)

2
[bqb−q + b+q b

+
−q] + . . . (7.36)

with ω(q, t) = ωi(q)−∆gq(t)
gi(q)
ωi(q)

and g(q, t) = ∆gq(t)
ωq

ωi(q)
, and the dots stand

for an unimportant time dependent energy shift. The resulting Hamiltonian
is then analyzed similarly to Eq. (1.42).

After some tedious calculations[186], the LE takes a particularly simple
form

L(t) = exp

(

−
∑

q>0

ln
(

|uq(t)|2
)

)

, (7.37)
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where uq(t) is the time-dependent Bogoliubov coefficient, describing Eq.
(7.36) from Eq. (7.4). This result determines the complete time dependence
of the generalized LE in a LL and holds for any non-equilibrium evolution.
This applies to any quadratic bosonic Hamiltonian such as a Bose-Einstein
condensate or the Dicke model. We regularize the q sums in (7.37) by an
exp(−α|q|) factor, with 1/α an ultraviolet cutoff[71].

We can now use the function Q(t) to calculate the LE. Changing Q(t)
adiabatically, the LE is just the overlap of the ground states of the initial
and final Hamiltonian and, in agreement with Refs. [222, 152], reads as

Lad =

(

1

2
+

1

4

(

Ki

Kf
+

Kf

Ki

))−L/2πα

, (7.38)

with L being the system size. This remains valid in the steady state for
near-adiabatic quenches, τ ≫ α/v with v being the sound velocity in the
final state.

Q(t)

0 3t 4t 5t2tt

1

n=1 n=2 n=3

6t

Figure 7.8: (Color online) The bang-bang protocol is visualized up to n = 3.
The arrows indicate the time instant when the overlap is calculated for an
nth order protocol.

For a SQ [180], however, Eq. (7.4) yields

|uq(t)|2 = 1 +
1

4
sin2(ωf(q)t)

(

Kf

Ki
− Ki

Kf

)2

, (7.39)

with ωf(q) = v|q| denoting the excitation energy after the quench. By plug-
ging this back to Eq. (7.37), we find for the short time limit (t≪ α/v)

LSQ(t) ∼ exp
(

−c L (t/tc)
2/α
)

(7.40)

where c is a non-universal constant of order unity. The characteristic decay
time of this expression is tc ≡ 4α/v|Kf/Ki−Ki/Kf |, and 1/t2c can be identi-
fied as the variance of energy per particle after the quench. For intermediate
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times t ∼ tc, the LE displays a non-universal transient signal (see Fig. 7.9b),
however, for very long times, t ≫ α/v, the LE for SQ becomes time inde-
pendent and universal. This can be determined by substituting Eq. (7.39)
back to Eq. (7.37), expanding the logarithm, then performing the momen-
tum integral in the t ≫ α/vf limit, and finally resumming of the resulting
series gives

LSQ(t≫ α/v) =

(

1

2
+

1

4

(

Ki

Kf
+

Kf

Ki

))−L/πα

, (7.41)

which holds also true for fast quenches, τ ≪ α/v. Excitations are only
produced at t = 0, which interfere with each other for a short amount of
time, causing Eq. (7.40), but after this phase coherence is lost, excitations
propagate independently and only their total number determines the overlap.
Eqs. (7.38) and (7.41) implies that for t→∞

LSQ = L2
ad. (7.42)

The exponent of the LE is further enhanced[186] by repeating the Q(t >
0): SQ to 1, holding time t, SQ to 0, holding time t sequence n times (bang-
bang protocol, visualized in Fig. 7.8). The generalized LE is the nth power of
the SQ overlap in Eq. (7.41) as Ln(2nt) = Ln

SQ(t) = L2n
ad in the post-quench

steady state, therefore the exponent is enhanced by a factor of n.
We compared the analytical results to numerical data obtained on the

one-dimensional XXZ Heisenberg model[71] in Eq. (1.48) by Frank Pollmann
using MPS based methods[186], covering 1/2 < K <∞, for adiabatic ramps
and SQs from Jz = 0 to a finite Jz.

The factor L/πα in the exponent in Eqs. (7.38) and (7.41) contains the
unknown short distance cutoff. However, its value can be fixed by calculat-
ing the fidelity susceptibility, χf , around the non-interacting XX point of the
Heisenberg model, in which case L/2πα ≈ Nχfπ

2, where N is the number of
lattice sites and χf ≈ 0.0195[223]. Using then the Bethe Ansatz result [71]
for the LL parameter K from Eq. (1.53), we find an excellent agreement with
the numerical data with no fitting parameter (see Fig. 7.9a). This excellent
agreement is somewhat surprising since, as expected, the non-universal tran-
sient signals clearly differ in the LL approach and the numerics, and also,
because the LL description completely neglects (asymptotically irrelevant)
back scattering processes, contained in the lattice calculations.

Slight deviations are only visible close to the end points of the critical
region of the XXZ Heisenberg model in Fig. 7.9, where a description based
on the Luttinger model becomes less accurate, as discussed in the Introduc-
tion. Close to the Jz = J point, the neglected back scattering term, driving
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Figure 7.9: a.) The exponent of the generalized Loschmidt echo is shown
for SQ n = 1 (circle), double quench n = 2 (triangle) and adiabatic time
evolution (square) for the XXZ Heisenberg model in the steady state, start-
ing from the XX point and ending up at a finite Jz, obtained numerically
from MPS based methods. The solid lines are the analytical results from
Eqs. (7.38) and (7.41). The inset shows the ratio of the SQ and adiabatic
exponents (diamond) and the n = 2 and 1 exponents (circle) from numerics,
which agrees with the expected value of 2. b.) Typical numerical results
(solid lines) of the LE of the XXZ model are shown for a SQ from the XX
point to Jz = 0.5J and -0.3J , the dashed curve is the analytical expression
using Eqs. (7.37) and (7.39). c.) The scaling of the numerical data expected
from Eq. (7.40) for short times for a SQ is visualized from Jz = 0 to 0.1J to
0.6J with 0.1J steps from top to bottom in arbitrary units.
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the Kosterlitz-Thouless phase transition causes a slight disagreement. Upon
approaching the ferromagnetic critical point at Jz = −J , on the other hand,
the validity of bosonization shrinks to very small energies, and the high en-
ergy modes, which are not accounted for properly by the Luttinger model,
also influence the overlap.

We propose to measure the LE of the LL in a cold atomic setting, where
a flux qubit[224, 225] is used to control the interaction between the atoms.
The flux qubit consists of a Josephson junction circuit, and is governed by
the Hamiltonian Hqubit = ǫσz +∆σx, with ∆ the tunneling between the two
eigenstates of σz, | 	〉 and | �〉, carrying oppositely circulating persistent
currents, ±I, and ǫ the energy splitting. In addition to the external flux,
Φext, the states | 	〉 and | �〉 generate an additional flux ∓Φf . Ideally,
tunneling between them is suppressed.

The one-dimensional quantum gas is positioned above the flux qubit (see
Fig. 7.7), such that the total magnetic field of the state | �〉 of flux Φext+Φf

be at a Feshbach resonance, while the field of the state | 	〉 of flux Φext−Φf ,
be further away from the resonance. The qubit switching-induced magnetic
field difference is estimated for an elongated rectangular flux qubit, using
the Boit-Savart law, with parallel sides comparable to the length of a typical
cold atomic tube (∼ 10 µm). Assuming a persistent current of I = 2 µA and
a separation of 2 µm between the two lines of the qubit, we obtain a field
difference δBf ∼ 16 mG. Although relatively small, this field is comparable
to the width ∆B = 15 mG of some narrow Feshbach resonances used to
realize a LL in 87Rb systems [226].

In this setup, one could use rf spectroscopy to measure the absorption
spectrum of the qubit in the presence and in the absence of the trapped
gas, similarly to the X-ray edge singularity problem[72]. This absorption
signal is just proportional to the Fourier transform of the LE. Alternatively,
the LE can be measured using Ramsey interferometry[220, 219]: initializing
the qubit in the | 	〉 state with weak interactions to the cold atoms, yields a
wavefunction | 	〉⊗|Ψ0〉 at t = 0. By applying a π/2 rf pulse, a superposition
of the two qubit states is produced (| 	〉+ | �〉)/

√
2⊗|Ψ0〉, yielding distinct,

qubit state dependent time evolution for |Ψ0〉, where | 	〉⊗|Ψ0〉 represents the
time evolved, weakly interacting gas, while | �〉⊗|Ψ0〉 stands for the strongly
interacting LL. After time t, a second π/2 pulse and the measurement of the
qubit current 〈Î〉 ∼ 〈σz〉 is performed, giving a signal proportional to L(t).

We have investigated the Loschmidt echo of Luttinger liquids after quan-
tum quenches, and found universal behavior at various stages of the non-
equilibrium time evolution[186]. These results were verified numerically by
Frank Pollmann using MPS based methods on the XXZ Heisenberg model.
A feasible experimental scheme using Ramsey interferometry on a hybrid

101



system of cold atoms and a flux qubit is proposed to test these ideas.
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Chapter 8

Theses of this DSc dissertation

1. We have studied the evolution of the current in the two-dimensional
Dirac equation, relevant for graphene and topological insulators, after
switching on a longitudinal electric field E. The current parallel to
the field reveals three distinct regions, termed as classical, Kubo and
Schwinger regions. In the first one, the current increases linearly with
time and electric field. In the second one, the current becomes time-
independent, but scales linearly with the field. In the last region, the
current grows as ∼ tE3/2, which is dominated by electron-hole pairs
created by the strong electric field. From this, we predicted that the
current-voltage characteristics of the steady state of graphene crosses
over from the linear response regime to a non-linear regime, where the
current increases with the 3/2 power of the applied voltage. Subsequent
experiments have confirmed our prediction. We have also determined
the non-linear Hall-current-voltage relation of graphene and topological
insulators: for strong electric field, the Hall current is expected to
increase a E1/2.

2. The energy spectrum in bilayer graphene can be tuned by the applica-
tion of a perpendicular electric field, which controls the opening of a
band-gap around half-filling. We have shown that by modulating this
gap in real time, excited states are produced in bilayer graphene, which
parallels to the defect production during non-adiabatic passages though
quantum critical points, described by the Kibble-Zurek theory. After
the quench, population inversion occurs for wavevectors close to the
Dirac point. This could, at least in principle provide a coherent source
of infra-red radiation with tunable spectral properties (frequency and
broadening).

3. The canonical model of quantum optics, the Jaynes-Cummings Hamil-
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tonian describes a two level atom in a cavity interacting with elec-
tromagnetic field. Graphene, a condensed matter system, possesses
low energy excitations obeying to the Dirac equation, and mimics the
physics of quantum electrodynamics. These two seemingly unrelated
fields turn out to be closely related to each other. We demonstrate that
Rabi oscillations, corresponding to the excitations of the atom in the
former case are observable in the optical response of the latter in quan-
tizing magnetic field, providing us with a transparent picture about
the structure of optical transitions in graphene. While the longitudi-
nal conductivity reveals chaotic Rabi oscillations, the Hall component
measures coherent ones. This opens up the exciting possibility of inves-
tigating a microscopic model of a few quantum objects in a macroscopic
experiment of a bulk material with tunable parameters.

4. Inspired by the observation that time-periodic perturbations can be
used to engineer topological properties of matter by altering the Flo-
quet band structure, we have studied the fate of a spin-Hall edge state
of a two-dimensional topological insulator in the presence of circularly
polarized electromagnetic field. As opposed to similar problems, the
spin-Hall edge state is sensitive mostly to the Zeeman term and not
to the orbital effect. The photocurrent, which is directly proportional
to the magnetization along the edge via the magnetoelectric effect, de-
velops a finite, helicity dependent expectation value and turns from
dissipationless to dissipative with increasing radiation frequency, sig-
nalling a change in the topological properties.

5. We have studied the effect of an interaction quench on one-dimensional
gapless interacting systems, i.e. Luttinger liquids. The fermionic single
particle density matrix reveals several regions of spatial and temporal
coordinates relative to the quench time, termed as Fermi liquid, sud-
den quench Luttinger liquid, adiabatic Luttinger liquid regimes, and
a Luttinger liquid regime with time dependent exponent. The vari-
ous regimes are argued to be observable in the momentum distribution
of the fermions, directly accessible through time of flight experiments.
We have also investigated the hard-core bosons of the XXZ Heisen-
berg model and their correlation functions. These differ clearly from
their fermionic counterpart and in the long time limit, the quench time
does not reveal itself in their momentum distribution function. Our
analytical results are benchmarked by comparing them to numerical
simulations using matrix-product state based methods.

6. Motivated by recent developments in non-equilibrium statistical me-
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chanics, we have studied the statistics of work done on a Luttinger liq-
uid after an interaction quench. In the thermodynamic limit, the prob-
ability distribution function of the work done exhibits a non-Gaussian
maximum around the excess heat, carrying almost all spectral weight.
In contrast, in the small system limit most spectral weight is carried by
a delta peak at the energy of the adiabatic process, and an oscillating
probability distribution function with dips at energies commensurate
to the quench duration and with an exponential envelope develops.

7. While much is known about Anderson’s orthogonality catastrophe and
the X-ray edge problem due to local perturbation, the many-body gen-
eralization of the orthogonality catastrophe is still lacking. Here we
bridge this gap and study the generalized Loschmidt echo of Luttinger
liquids after a global change of interaction. It decays exponentially
with system size and exhibits universal behaviour: the steady state
exponent after quenching back and forth n-times between 2 Luttinger
liquids is 2n-times bigger than that of the adiabatic overlap, and de-
pends only on the initial and final Luttinger liquid parameters. These
are corroborated numerically by matrix-product state based methods
of the XXZ Heisenberg model. An experimental setup consisting of
a hybrid system containing cold atoms and a flux qubit coupled to a
Feshbach resonance is proposed to measure the Loschmidt echo using
rf spectroscopy or Ramsey interferometry.
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[90] H. Moritz, T. Stöferle, K. Günter, M. Köhl, and T. Esslinger, Phys.
Rev. Lett. 94, 210401 (2005).
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[186] B. Dóra, F. Pollmann, J. Fortágh, and G. Zaránd, Phys. Rev. Lett.
111, 046402 (2013).

[187] C. Karrasch, J. Rentrop, D. Schuricht, and V. Meden, Phys. Rev. Lett.
109, 126406 (2012).

[188] M. Fannes, B. Nachtergaele, and R. W. Werner, Commun. Math. Phys.
144, 443 (1992).

[189] S. R. White, Phys. Rev. Lett. 69(19), 2863 (1992).

[190] J. A. Kjäll, M. P. Zaletel, R. S. K. Mong, J. H. Bardarson, and F. Poll-
mann, Phys. Rev. B 87, 235106 (2013).

[191] I. McCulloch, J. Stat. Mech Theor. Exp. p. P10014 (2007).

[192] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007).

119
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